Results 161 to 170 of about 165,078 (298)
Riemannian Geometry for the Classification of Brain States with Intracortical Brain Recordings
Geometric machine learning is applied to decode brain states from invasive intracortical neural recordings, extending Riemannian methods to the invasive regime where data is scarcer and less stationary. A Minimum Distance to Mean classifier on covariance manifolds uses geodesic distances to outperform convolutional neural networks while reducing ...
Arnau Marin‐Llobet +9 more
wiley +1 more source
This study investigates the neuromorphic plasticity behavior of 180 nm bulk complementary metal oxide semiconductor (CMOS) transistors at cryogenic temperatures. The observed hysteresis data reveal a signature of synaptic behavior in CMOS transistors at 4 K.
Fiheon Imroze +8 more
wiley +1 more source
This study presents a neural network‐based methodology for Berkeley Short‐Channel IGFET Model–Common Multi‐Gate parameter extraction of gate‐all‐around field effect transistors, integrating binning adaptive sampling and transformer neural networks to efficiently capture current–voltage and capacitance–voltage characteristics.
Jaeweon Kang +4 more
wiley +1 more source
Model interpretability on private-safe oriented student dropout prediction. [PDF]
Liu H, Mao M, Li X, Gao J.
europepmc +1 more source
This article proposes a lightweight YOLOv4‐based detection model using MobileNetV3 or CSPDarknet53_tiny, achieving 30+ FPS and higher mAP. It also presents a ShuffleNet‐based classification model with transfer learning and GAN‐augmented images, improving generalization and accuracy.
Qingyang Liu, Yanrong Hu, Hongjiu Liu
wiley +1 more source
A PSO weighted ensemble framework with SMOTE balancing for student dropout prediction in smart education systems. [PDF]
Jain A +5 more
europepmc +1 more source
This study introduces a framework that combines graph neural networks with causal inference to forecast recurrence and uncover the clinical and pathological factors driving it. It further provides interpretability, validates risk factors via counterfactual and interventional analyses, and offers evidence‐based insights for treatment planning ...
Jubair Ahmed +3 more
wiley +1 more source
Student dropout prediction through machine learning optimization: insights from moodle log data. [PDF]
Rebelo Marcolino M +7 more
europepmc +1 more source
Cross‐Modal Characterization of Thin‐Film MoS2 Using Generative Models
Cross‐modal learning is evaluated using atomic force microscopy (AFM), Raman spectroscopy, and photoluminescence spectroscopy (PL) through unsupervised learning, regression, and autoencoder models. Autoencoder models are used to generate spectroscopy data from the microscopy images.
Isaiah A. Moses +3 more
wiley +1 more source
Identifying non‐small cell lung cancer (NSCLC) subtypes is essential for precision cancer treatment. Conventional methods are laborious, or time‐consuming. To address these concerns, RPSLearner is proposed, which combines random projection and stacking ensemble learning for accurate NSCLC subtyping. RPSLearner outperforms state‐of‐the‐art approaches in
Xinchao Wu, Jieqiong Wang, Shibiao Wan
wiley +1 more source

