Results 91 to 100 of about 40,188 (259)
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source
Compressive and Noncompressive Power Spectral Density Estimation from Periodic Nonuniform Samples [PDF]
This paper presents a novel power spectral density estimation technique for band-limited, wide-sense stationary signals from sub-Nyquist sampled data. The technique employs multi-coset sampling and incorporates the advantages of compressed sensing (CS ...
Davies, Mike E. +2 more
core +1 more source
An efficient NiOx HTL is successfully prepared by introducing MXene as an additive without further surface modification to fabricate high‐performance FASn0.5Pb0.5I3 perovskite solar cells. The introduction of MXene contributes to improved conductivity of NiOx, better aligned at NiOx/perovskite interfaces, and enhanced quality of perovskite films ...
Lijun Chen +12 more
wiley +1 more source
Decimated generalized Prony systems [PDF]
We continue studying robustness of solving algebraic systems of Prony type (also known as the exponential fitting systems), which appear prominently in many areas of mathematics, in particular modern "sub-Nyquist" sampling theories.
Batenkov, Dmitry
core
Sub-nyquist sampling techniques for cognitive radio applications [PDF]
Cognitive Radio (CR) has emerged as the promising solution to overcome the limited spectral resources available to support the incessant demand for higher data throughput in today’s wireless communications. CR operation exploits the underutilized spectral resources characteristics of typical radio channels by transmitting the data when a chan- nel is ...
openaire +2 more sources
An innovative medium entropy alloy (MEA) composite material was fabricated via micro laser powder bed fusion (μ‐LPBF) with appropriate nano‐ceramic particles doping and exhibited markedly improved overall performance, including synergistically enhanced strength and ductility, increased hardness and compressive strength, improved wear resistance and ...
Zhonglin Shen, Mingwang Fu
wiley +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
PTFE nanoparticle–anchored rGO (rGO@PTFE) for scalable solvent‐free fabrication of ultra‐thick, high‐density cathodes, achieving high conductivity (9.55 S cm−1), lithium transference (0.73), and improved wettability, is developed. The resulting cathode delivers 15.2 mAh cm−2 areal and 563 mAh cm−3 volumetric capacities, with full cells exhibiting 637 ...
Juhee Yoon +7 more
wiley +1 more source
A strategic spin‐polarization suppression in Fe single‐atom catalysts is proposed to enhance electrocatalytic reduction of NO to NH3. Employing a top‐down electrospinning strategy, self‐supported FeSAC with Fe‐N3S1 coordination structure and spin‐state transition is engineered from high‐spin to low‐spin.
Jialing Song +13 more
wiley +1 more source
Ag+‐mediated hydrothermal crystal engineering promotes preferential [hk1]‐oriented growth of Sb2Se3 via an ultrathin MoOx interlayer, improving crystallinity and suppressing non‐radiative recombination. The optimized Ag+ treatment photocathode delivers 24.7 mA cm−2 at 0 VRHE and improved stability, revealing an ion‐modulated route to high‐performance ...
Ziying Zhang +10 more
wiley +1 more source

