Results 241 to 250 of about 3,753,697 (367)

Named Entity Recognition Models for Machine Learning Interatomic Potentials: A User‐Centric Approach to Knowledge Extraction from Scientific Literature

open access: yesAdvanced Intelligent Discovery, EarlyView.
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley   +1 more source

Accelerating Primary Screening of USP8 Inhibitors from Drug Repurposing Databases with Tree‐Based Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces a tree‐based machine learning approach to accelerate USP8 inhibitor discovery. The best‐performing model identified 100 high‐confidence repurposable compounds, half already approved or in clinical trials, and uncovered novel scaffolds not previously studied. These findings offer a solid foundation for rapid experimental follow‐up,
Yik Kwong Ng   +4 more
wiley   +1 more source

Machine Learning‐Based Estimation of Experimental Artifacts and Image Quality in Fluorescence Microscopy

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The use of image quality metrics in combination with machine learning enables automatic image quality assessment for fluorescence microscopy images. The method can be integrated into the experimental pipeline for optical microscopy and utilized to classify artifacts in experimental images and to build quality rankings with a reference‐free approach ...
Elena Corbetta, Thomas Bocklitz
wiley   +1 more source

IAR‐Net: Tabular Deep Learning Model for Interventionalist's Action Recognition

open access: yesAdvanced Intelligent Systems, EarlyView.
This study presents IAR‐Net, a deep‐learning framework for catheterization action recognition. To ensure optimality, this study quantifies interoperator similarities and differences using statistical tests, evaluates the distribution fidelity of synthetic data produced by six generative models, and benchmarks multiple deep‐learning models.
Toluwanimi Akinyemi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy