Results 201 to 210 of about 157,223 (307)

Combining Electrochemical Reduction with Biosynthesis for Directed Conversion of CO2 into a Library of C3 Chemicals

open access: yesAdvanced Science, EarlyView.
In the H‐type electrolytic cell, carbon dioxide is reduced to acetic acid via electro‐microbial catalysis. The simply processed acetic acid is further converted through biological fermentation into high‐value‐added products, including acrylic acid, L‐lactic acid, and β‐alanine.
Kaixing Xiao   +8 more
wiley   +1 more source

Ion‐Confinement‐Assisted Erasure Purifies Oxidized MXene for Reuse

open access: yesAdvanced Science, EarlyView.
An erasure‐purification strategy removes surface‐derived TiO2 from oxidized Ti3C2Tx MXene by ion‐confinement‐induced interfacial conversion to soluble titanates, followed by brief acid washing. The scalable process enables approximately 70% material recovery, restores electrical conductivity, and recovers functional performance, including high ...
Xuefeng Zhang   +11 more
wiley   +1 more source

Breaking the Thick Electrode Paradox With an in situ VS2@V2CTx MXene Heterostructure for High‐Areal‐Capacity Batteries

open access: yesAdvanced Science, EarlyView.
This work pioneers an in situ gas‐phase conversion strategy to construct VS2@V2Tx heterostructures within a MWCNT network. The integrated architecture establishes interpenetrating electron/ion highways, enabling an ultra‐thick electrode (300 µm) to achieve a high areal capacity of 13.6 mAh cm−2 with exceptional cycling stability, demonstrating great ...
Lirong Wang   +9 more
wiley   +1 more source

Metastable Structure for Ultra‐Sustainable, High Capacity and Kinetics‐Enhanced Magnesium‐Ion Battery

open access: yesAdvanced Science, EarlyView.
A metastable‐phase evolution strategy is proposed for magnesium‐ion batteries, enabling the in situ formation of a metastable MgxT‐VS4 cathode during cycling. The metastable state reshapes Mg2+ storage kinetics and enhances structural stability, offering a new design paradigm for multivalent ion battery cathodes.
Rongrui Deng   +12 more
wiley   +1 more source

Tuning Li+ and Na+ Functionality in Renewable Carbon Electroactive Material Through Site‐Specific Nanostructural Disorder

open access: yesAdvanced Science, EarlyView.
This study presents a selective thermal transformation of polycarbonate into hybrid carbon materials. The structured carbon enhances electrochemical performance, particularly in lithium‐ion systems. Investigations reveal improved bimetallic ion diffusivity through the hybrid microstructure, contributing to excellent charge kinetics.
Montajar Sarkar   +7 more
wiley   +1 more source

Circular Potential of Lithium‐Ion Battery Recycling Slags: Quantifying Microstructure and Elemental Distribution for a Holistic Valorization

open access: yesAdvanced Science, EarlyView.
A lithium‐bearing slag is investigated with the goal of holistic valorization. The present β‐eucryptite (LiAlSiO4) exhibits a high lithium content and low levels of impurities. The spinel contains most of the chromium and vanadium, representing additional valorization opportunities.
Peter Cornelius Gantz   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy