Results 111 to 120 of about 5,885,991 (322)
Supervised methods of machine learning for email classification: a literature survey
In today’s digital landscape, email is acknowledged as a critical conduit for global data exchanges. With a surge in data volume, malefactors exploit user identities, leading to data misuse.
Muath AlShaikh+4 more
doaj +1 more source
Supervised Learning for Dynamical System Learning
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as ...
Hefny, Ahmed+2 more
openaire +3 more sources
Summary Data‐driven forecasting of ship motions in waves is investigated through feedforward and recurrent neural networks as well as dynamic mode decomposition. The goal is to predict future ship motion variables based on past data collected on the field, using equation‐free approaches.
Matteo Diez+2 more
wiley +1 more source
Supervised Learning of Graph Structure [PDF]
Graph-based representations have been used with considerable success in computer vision in the abstraction and recognition of object shape and scene structure. Despite this, the methodology available for learning structural representations from sets of training examples is relatively limited.
Torsello A., Rossi L.
openaire +1 more source
Dengue infection alters mosquito flight behavior, enabling detection using machine learning classifiers. This study analyzes 3D flight trajectories and evaluates multiple models, showing that longer sequence lengths improve classification performance.
Nouman Javed+3 more
wiley +1 more source
Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani+2 more
wiley +1 more source
In this study, the mechanical response of Y‐shaped core sandwich beams under compressive loading is investigated, using deep feed‐forward neural networks (DFNNs) for predictive modeling. The DFNN model accurately captures stress–strain behavior, influenced by design parameters and loading rates.
Ali Khalvandi+4 more
wiley +1 more source
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source
Annals of Clinical and Translational Neurology, EarlyView.
Majid Khalilizad+4 more
wiley +1 more source
Low‐Activation Compositionally Complex Alloys for Advanced Nuclear Applications—A Review
Low‐activation compositionally complex alloys (LACCAs) are advanced metallic materials primarily composed of low‐activation elements, offering advantages such as rapid compliance with operational standards and safe recyclability. This review highlights their potential for extreme high‐temperature irradiation environments as structural materials for ...
Yangfan Wang+8 more
wiley +1 more source