Results 111 to 120 of about 567,758 (306)
Evolution of Metal Surface Topography during Fatigue
Changes in surface topography reflect the state of fatigue damage. In this paper, a new method to characterize metal surface topography during fatigue has been proposed. Firstly, we acquired surface topography images based on machine vision and separated
Darong Zhu +4 more
doaj +1 more source
Generating Cell Surface Nucleated Hydrogels with an Artificial Membrane‐Binding Transglutaminase
Cell‐based therapies require advanced strategies to enhance cell delivery and bioactivity. Cell membrane engineering offers an avenue to impart new functions to delivered cells to boost their viability and function. Here, an artificial membrane‐binding transglutaminase is generated and biophysically characterized.
Rosalia Cuahtecontzi Delint +6 more
wiley +1 more source
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu +14 more
wiley +1 more source
DNA strands are employed both as dynamic linkers and nanoscale templates for the integration of Ag2S nanoparticles on MoS2, which in turn imparted photothermal responsiveness; this feature permits the selective cargo (fluorophore, quantum dots or an enzyme) release from the MoS2 surface in response to local heat induced by light irradiation.
Kai Chen +3 more
wiley +1 more source
De-icing performance evolution with increasing hydrophobicity by regulating surface topography
It is of great significance to grasp the role of surface topography in de-icing, which however remains unclear yet. Herein, four textured surfaces are developed by regulating surface topography while keeping surface chemistry and material constituents ...
Wei Weng +4 more
doaj +1 more source
Phase-stepping fiber-optic projected fringe system for surface topography measurements [PDF]
A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source.
Beheim, Glenn, Mercer, Carolyn R.
core +1 more source
Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle +2 more
wiley +1 more source
A spatiotemporal plasma–mediated laser processing approach is developed to fabricate ultrahigh–aspect ratio nanochannel arrays and corresponding perovskite nanowire arrays within transparent materials for optoelectronics devices. The laser‐fabricated nanochannels serve as templates for controlled perovskite infiltration and crystallization, enabling ...
Taijin Wang +3 more
wiley +1 more source
The Anisotropic Adsorption of De Novo Allosteric Two‐Component Protein Fibers on Mica Surfaces
In this study, the interfacial behavior of de novo designed proteins that self‐assemble into tubular architectures with distinct morphologies — small (S), large (L), and helical (H) fibers — at the muscovite mica‐water interface is explored using in situ AFM. Abstract Protein adsorption at solid–liquid interfaces underlies many biomedical and materials
Chenyang Shi +7 more
wiley +1 more source
Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner +9 more
wiley +1 more source

