Results 231 to 240 of about 3,306,869 (332)

Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics

open access: yesAdvanced Engineering Materials, EarlyView.
Machine learning (ML) is revolutionizing the development of bioinspired ceramics. This article investigates how ML can be used to design new ceramic materials with exceptional performance, inspired by the structures found in nature. The research highlights how ML can predict material properties, optimize designs, and create advanced models to unlock a ...
Hamidreza Yazdani Sarvestani   +2 more
wiley   +1 more source

Consolidate Overview of Ribonucleic Acid Molecular Dynamics: From Molecular Movements to Material Innovations

open access: yesAdvanced Engineering Materials, EarlyView.
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley   +1 more source

Robocasting of a Water‐Based Biopolymer/WO3 Nanopowder Paste as a Precursor to Tungsten Carbide Lattices

open access: yesAdvanced Engineering Materials, EarlyView.
This study demonstrates a novel, additive manufacturing approach to produce complex, porous tungsten carbide structures using water‐based direct ink writing/robocasting. Leveraging a modified commercial printer and heat treatment, the process yields lightweight, electrically conductive 3D architectures capable of supporting a mechanical load.
James Bentley Bevis   +3 more
wiley   +1 more source

Enhancing Corrosion Resistance and Mechanical Strength of 3D‐Printed Iron Polylactic Acid for Marine Applications via Laser Surface Texturing

open access: yesAdvanced Engineering Materials, EarlyView.
Laser surface texturing significantly improves the corrosion resistance and mechanical strength of 3D‐printed iron polylactic acid (Ir‐PLA) for marine applications. Optimal laser parameters reduce corrosion by 80% and enhance tensile strength by 25% and ductility by 15%.
Mohammad Rezayat   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy