Results 161 to 170 of about 442,254 (313)

Smart Flexible Tactile Sensors: Recent Progress in Device Designs, Intelligent Algorithms, and Multidisciplinary Applications

open access: yesAdvanced Intelligent Discovery, EarlyView.
Flexible tactile sensors have considerable potential for broad application in healthcare monitoring, human–machine interfaces, and bioinspired robotics. This review explores recent progress in device design, performance optimization, and intelligent applications. It highlights how AI algorithms enhance environmental adaptability and perception accuracy
Siyuan Wang   +3 more
wiley   +1 more source

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Toward Predictable Nanomedicine: Current Forecasting Frameworks for Nanoparticle–Biology Interactions

open access: yesAdvanced Intelligent Discovery, EarlyView.
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova   +4 more
wiley   +1 more source

Solving Data Overlapping Problem Using A Class‐Separable Extreme Learning Machine Auto‐Encoder

open access: yesAdvanced Intelligent Systems, Volume 7, Issue 3, March 2025.
The overlapping and imbalanced data in classification present key challenges. Class‐separable extreme learning machine auto‐encoding (CS‐ELM‐AE) is proposed, which is an enhancement of ELM‐AE that better handles overlapping data by clustering points from the same class together. Applying oversampling addresses imbalanced data.
Ekkarat Boonchieng, Wanchaloem Nadda
wiley   +1 more source

Home - About - Disclaimer - Privacy