Results 191 to 200 of about 442,254 (313)

Multitarget Recognition of Flower Images Based on Lightweight Deep Neural Network and Transfer Learning

open access: yesAdvanced Intelligent Systems, EarlyView.
This article proposes a lightweight YOLOv4‐based detection model using MobileNetV3 or CSPDarknet53_tiny, achieving 30+ FPS and higher mAP. It also presents a ShuffleNet‐based classification model with transfer learning and GAN‐augmented images, improving generalization and accuracy.
Qingyang Liu, Yanrong Hu, Hongjiu Liu
wiley   +1 more source

Optimization of SVM Multiclass by Particle Swarm (PSO-SVM) [PDF]

open access: yesInternational Journal of Modern Education and Computer Science, 2010
Fatima Ardjani, Kaddour Sadouni
openaire   +1 more source

From Droplet to Diagnosis: Spatio‐Temporal Pattern Recognition in Drying Biofluids

open access: yesAdvanced Intelligent Systems, EarlyView.
This article integrates machine learning (ML) with the spatio‐temporal evolution of biofluid droplets to reveal how drying and self‐assembly encode distinctive compositional fingerprints. By leveraging textural features and interpretable ML, it achieves robust classification of blood abnormalities with over 95% accuracy.
Anusuya Pal   +2 more
wiley   +1 more source

Product Specification Extraction Using SVM and Transductive SVM

open access: yesJournal of Natural Language Processing, 2005
KAZUTAKA SHIMADA   +2 more
openaire   +1 more source

Polymerase Chain Reaction. Perturbation Theory and Machine Learning Artificial Intelligence‐Experimental Microbiome Analysis: Applications to Ancient DNA and Tree Soil Metagenomics Cases of Study

open access: yesAdvanced Intelligent Systems, EarlyView.
The polymerase chain reaction (PCR).Perturbation Theory and Machine Learning framework integrates perturbation theory and machine learning to classify genetic sequences, distinguishing ancient DNA from modern controls and predicting tree health from soil metagenomic data.
Jose L. Rodriguez   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy