Results 71 to 80 of about 238 (209)

Enhancing Synaptic Plasticity and Multistate Retention of Organic Neuromorphic Devices Using Anion‐Excessive Gel Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
Anion‐excessive gel‐based organic synaptic transistors (AEG‐OSTs) that can maintain electrical neutrality are developed to enhance synaptic plasticity and multistate retention. Key improvement is attributed to the maintenance of electrical neutrality in the electrolyte even after electrochemical doping, which reduces the Coulombic force acting on ...
Yousang Won   +3 more
wiley   +1 more source

Near‐Infrared Light‐Programmable Negative Differential Transconductance in Organic Electrochemical Transistors for Reconfigurable Logic

open access: yesAdvanced Functional Materials, EarlyView.
Organic electrochemical transistors based on a Near‐Infrared (NIR)‐responsive polymer p(C4DPP‐T) and iodide electrolyte exhibit optically programmable negative differential transconductance. NIR illumination triggers an iodine‐mediated redox process, enabling a transition from binary to ternary conductance states within a single‐layer device.
Debdatta Panigrahi   +7 more
wiley   +1 more source

A Low Power Sigma-Delta Modulator with Hybrid Architecture. [PDF]

open access: yesSensors (Basel), 2020
An S   +7 more
europepmc   +1 more source

From Food to Power: Hydrogel Thermoelectrics for Ingestible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
We introduce a fully edible thermoelectric–electrochromic platform that harvests heat from food and converts it into a visible color change. N‐type and p‐type hydrogel thermoelectric generators connected in series power anthocyanin‐based electrochromic displays, demonstrating the feasibility of safe, biodegradable, ingestible systems for on‐food ...
Antonia Georgopoulou   +3 more
wiley   +1 more source

Designing Asymmetric Memristive Behavior in Proton Mixed Conductors for Neuromorphic Applications

open access: yesAdvanced Functional Materials, EarlyView.
Protonic devices that couple ionic and electronic transport are demonstrated as bioinspired neuromorphic elements. The devices exhibit rubber‐like asymmetric memristive behavior with slow voltage‐driven conductance increase and rapid relaxation, enabling simplified read–write operation.
Nada H. A. Besisa   +6 more
wiley   +1 more source

Conductance‐Dependent Photoresponse in a Dynamic SrTiO3 Memristor for Biorealistic Computing

open access: yesAdvanced Functional Materials, EarlyView.
A nanoscale SrTiO3 memristor is shown to exhibit dynamic synaptic behavior through the interaction of local electrical and global optical signals. Its photoresponse depends quantitatively on the conductance state, which evolves and decays over tunable timescales, enabling ultralow‐power, biorealistic learning mechanisms for advanced in‐memory and ...
Christoph Weilenmann   +8 more
wiley   +1 more source

Trap‐Assisted Transport and Neuromorphic Plasticity in Lead‐Free 2D Perovskites PEA2SnI4

open access: yesAdvanced Functional Materials, EarlyView.
An artificial retina built from lead‐free layered perovskite (PEA)2SnI4 converts light input into a persistent photocurrent and sums successive flashes over time. Micro/nanocrystals integrated on electrodes act as synapse‐like pixels that perform temporal integration directly in hardware. This in‐sensor preprocessing merges detection and computation on
Ofelia Durante   +17 more
wiley   +1 more source

A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity. [PDF]

open access: yesPhilos Trans A Math Phys Eng Sci, 2022
Ahmadi-Farsani J   +5 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy