Results 1 to 10 of about 42,432 (200)
Proximity measures in symbolic data analysis
The Authors consider the general problem of similarity and dissimilarity measures in Symbolic Data Analysis. First of all they examine the classical definitions of elementary event, assertion object, hierarchical dependences and logical dependences. Then
Luciano Nieddu, Alfredo Rizzi
doaj +3 more sources
The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis [PDF]
Background Dengue fever is a leading cause of severe illness and hospitalization in Taiwan. This study sought to elucidate the linkage between dengue fever incidence and climate factors. Results The result indicated that temperature, accumulated rainfall,
Yi-Horng Lai
doaj +2 more sources
New models for symbolic data analysis [PDF]
AbstractSymbolic data analysis (SDA) is an emerging area of statistics concerned with understanding and modelling data that takes distributional form (i.e. symbols), such as random lists, intervals and histograms. It was developed under the premise that the statistical unit of interest is the symbol, and that inference is required at this level.
Boris Beranger, Huan Lin, Scott Sisson
+7 more sources
Symbolic Analysis for Data Plane Programs Specialization [PDF]
Programmable network data planes have extended the capabilities of packet processing in network devices by allowing custom processing pipelines and agnostic packet processing. While a variety of applications can be implemented on current programmable data planes, there are significant constraints due to hardware limitations.
Thomas Luinaud +2 more
openaire +3 more sources
An Introduction to Symbolic data Analysis and its Application to the Sodas Project
Las descripciones de los datos de las unidades se llaman "simbólicas" cuando son más complejas que las estándar debido al hecho que contienen variación interna y están estructuradas. Los datos simbólicos aparecen a través de diversas fuentes, por ejemplo
Edwin Diday
doaj +3 more sources
Extracting Information from Interval Data Using Symbolic Principal Component Analysis
We introduce generic definitions of symbolic variance and covariance for random interval-valued variables, that lead to a unified and insightful interpretation of four known symbolic principal component estimation methods: CPCA, VPCA, CIPCA, and ...
M. R. Oliveira +4 more
doaj +3 more sources
An Introduction to symbolic data analysis
The main aim of the symbolic approach in data analysis is to extend problems, methods and algorithms used on standard data to more complex data called "symbolic objects" in order to distinguish them from objects (described by numerical or categorical variables) treated by standard data nalysis methods.
Edwin Diday
openaire +3 more sources
Symbolic Data Analysis and Formal Concept Analysis
L'analyse formelle de concepts (FCA) est utilisée pour construire des treillis de concepts à partir de tables de données binaires pour des besoins de découverte de connaissances. Les structures de patrons en FCA sont capables de prendre en compte des données complexes et de plus fournissent une vue concise et algorithmique efficace sur le formalisme ...
Kaytoue, Mehdi +3 more
openaire +3 more sources

