Results 121 to 130 of about 229,997 (299)

Role of Liquid Composition in the Transient Liquid Assisted Growth of Superconducting YBa2Cu3O7‐δ Films

open access: yesAdvanced Materials, EarlyView.
The Y supersaturation in the [Ba‐Cu(I/II)‐O] transient liquid composition is the driving force toward YBCO nucleation and growth in TLAG. Tuning the initial (Ba:Cu) molar ratio in the ink composition determines the YBCO epitaxial nucleation through supersaturation control.
Lavinia Saltarelli   +12 more
wiley   +1 more source

Water Permeates and Plasticizes Amorphous Carbon Dots: Unraveling the Inner Accessibility of the Nanoparticles by Glass Transition Studies

open access: yesAdvanced Materials, EarlyView.
The water permeability of amorphous carbon dots (CDs) is demonstrated by investigating their plasticization. Novel polyamide‐based and amorphous nanoparticles are synthesized by controlling their inner packing density. Water plasticization is evidenced by the decrease of the CDs glass transition temperature with increasing the hydration degree.
Elisa Sturabotti   +8 more
wiley   +1 more source

Excited State Opto‐Ionic Reservoir Computing in Hybrid Perovskite Electrochemically‐Gated Luminescent Cells

open access: yesAdvanced Materials, EarlyView.
A neuromorphic computing system exploiting opto‐ionic modulation in lead halide perovskite microcrystals demonstrates high‐dimensional reservoir dynamics with diffraction‐limited node resolution. Leveraging ultrafast excited‐state interactions, it achieves efficient computation (800 pJ/node‐operation), robustly distinguishing 4‐bit pulse sequences ...
Philipp Kollenz   +7 more
wiley   +1 more source

Additive Manufacturing of Molecular Architecture Encoded Stretchable Polyethylene Glycol Hydrogels and Elastomers

open access: yesAdvanced Materials, EarlyView.
Bottlebrush molecular architecture prevents the crystallization of high molecular weight polyethylene glycol (PEG) based polymers, enabling highly stretchable photocurable PEG hydrogels and elastomers for high‐performance conductive solvent‐free electrolytes at room temperature and for additive manufacturing of complex architectures and multi‐material ...
Baiqiang Huang   +5 more
wiley   +1 more source

High Light Utilization and Color Rendering in Vacuum‐Deposited Semitransparent Perovskite Solar Cells

open access: yesAdvanced Materials, EarlyView.
In this work, low bandgap (≈1.55 eV) semitransparent perovskite solar cells (ST‐PSCs) having thin (thickness < ≈100 nm) perovskite layers and transparent conductive oxide‐based rear electrodes are fabricated using vacuum‐deposition methods. Two different ST‐PSCs demonstrated a high light utilization efficiency value of 4.2 (PCE: 9.26% and AVT: 45.3 ...
Abhyuday Paliwal   +9 more
wiley   +1 more source

Emerging innovation modes and (regional) innovation systems in the Czech Republic [PDF]

open access: yes
Innovation studies literature has put high importance to sectoral and regional patterns of innovations. This research effort is based upon the argument that industries as well as regions represent quite homogeneous entities with respect to firms ...
Pavla Zizalova
core  

Archeo‐Inspiration from the Cultural History of Glass: Historic Accounts, Anecdotes and Hard Facts as Challenges to Modern Material Science

open access: yesAdvanced Materials, EarlyView.
Glass, historically valued for its purity and durability, has long inspired artists and societies. This article introduces the concept of “Archeo‐Inspiration”, drawing on cultural and historical contexts of glass to guide future material innovations.
Eva von Contzen   +3 more
wiley   +1 more source

Polyimide‐Linked Hexaazatriphenylene‐Based Porous Organic Polymer with Multiple Redox‐Active Sites as a High‐Capacity Organic Cathode for Lithium‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
A high‐capacity polyimide‐linked porous organic polymer (HAT‐PTO) incorporating numerous redox‐active centers is synthesized via a hydrothermal reaction, delivering a high theoretical capacity of 484 mAh g−1. In situ hybridization with carboxyl‐functionalized multiwalled carbon nanotubes enhances conductivity and stability, achieving 397 mAh g−1 at C ...
Arindam Mal   +7 more
wiley   +1 more source

Radiation‐Resistant Aluminum Alloy for Space Missions in the Extreme Environment of the Solar System

open access: yesAdvanced Materials, EarlyView.
A novel ultrafine‐grained aluminum crossover alloy exhibits unprecedented radiation resistance and mechanical stability under extreme irradiation doses up to 100 dpa. The exceptional resilience arises from thermodynamically stable T‐phase precipitates, enabling lightweight structural materials for next‐generation spacecraft and extraterrestrial ...
Patrick D. Willenshofer   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy