Results 211 to 220 of about 41,294 (296)

Collision‐Resilient Winged Drones Enabled by Tensegrity Structures

open access: yesAdvanced Robotics Research, EarlyView.
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui   +5 more
wiley   +1 more source

Multi‐Material Additive Manufacturing of Soft Robotic Systems: A Comprehensive Review

open access: yesAdvanced Robotics Research, EarlyView.
This review explores the transformative role of multi‐material additive manufacturing (MMAM) in the development of soft robotic systems. It presents current techniques, materials, and design strategies that enable functionally graded and adaptive structures.
Ritik Raj   +2 more
wiley   +1 more source

Auto‐Routing Fluidic Printed Circuit Boards

open access: yesAdvanced Robotics Research, EarlyView.
This work introduces (STREAM) software tool for routing efficiently advanced macrofluidics, an open‐source software tool for automating the design of 3D‐printable fluidic circuit boards. STREAM streamlines tube routing and layout, enabling the rapid fabrication of fluidic networks for soft robotics, lab‐on‐a‐chip devices, microfluidics, and biohybrid ...
Savita V. Kendre   +3 more
wiley   +1 more source

3D Printing of Soft Robotic Systems: Advances in Fabrication Strategies and Future Trends

open access: yesAdvanced Robotics Research, EarlyView.
Collectively, this review systematically examines 3D‐printed soft robotics, encompassing material selections, function integration, and manufacturing methodologies. Meanwhile, fabrication strategies are analyzed in order of increasing complexity, highlighting persistent challenges with proposed solutions.
Changjiang Liu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy