Results 31 to 40 of about 1,844 (204)
The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action.
Frédéric Barbaresco
doaj +1 more source
INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY [PDF]
AbstractQuaternionic vector mKDV equations are derived from the Cartan structure equation in the symmetric space=Sp(n+1)/Sp(1) ×Sp(n). The derivation of the soliton hierarchy utilizes a moving parallel frame and a Cartan connection 1-form ω related to the Cartan geometry onmodelled on$(\mk{sp}_{n+1}, \mk{sp}_{1}\,{\times}\, \mk{sp}_{n})$.
Asadi, E., Sanders, J.A.
openaire +3 more sources
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source
Ammann Tilings in Symplectic Geometry
In this article we study Ammann tilings from the perspective of symplectic geometry. Ammann tilings are nonperiodic tilings that are related to quasicrystals with icosahedral symmetry.
Fiammetta Battaglia, Elisa Prato
doaj +1 more source
ABSTRACT This article addresses the problem of quantifying the uncertainty in planning aircraft ground movement operations using towbarless robotic tractors taking into account the inherent uncertainties of the problem, specifically, the uncertainties in the weight of the aircraft and in the rolling resistance of the wheels of the main landing gear ...
Almudena Buelta +2 more
wiley +1 more source
Plank theorems and their applications: A survey
Abstract Plank problems concern the covering of convex bodies by planks in Euclidean space and are related to famous open problems in convex geometry. In this survey, we introduce plank problems and present surprising applications of plank theorems in various areas of mathematics.
William Verreault
wiley +1 more source
Gear fault diagnosis based on SGMD noise reduction and CNN
Gear vibration fault signals are non-stationary and nonlinear, so it is very difficult to accurately extract the fault characteristics for diagnosis. As symplectic geometry mode decomposition (SGMD) has shown excellent decomposition performance and noise
Wei CHEN +3 more
doaj +1 more source
On contact 3‐manifolds that admit a nonfree toric action
Abstract We classify all contact structures on 3‐manifolds that admit a nonfree toric action, up to contactomorphism, and present them through explicit topological descriptions. Our classification is based on Lerman's classification of toric contact 3‐manifolds up to equivariant contactomorphism [Lerman, J. Symplectic Geom. 1 (2003), 785–828].
Aleksandra Marinković, Laura Starkston
wiley +1 more source
Equivariant toric geometry and Euler–Maclaurin formulae
Abstract We first investigate torus‐equivariant motivic characteristic classes of toric varieties, and then apply them via the equivariant Riemann–Roch formalism to prove very general Euler–Maclaurin‐type formulae for full‐dimensional simple lattice polytopes.
Sylvain E. Cappell +3 more
wiley +1 more source
WDVV‐based recursion for open Gromov–Witten invariants
Abstract We give a computability result for open Gromov–Witten invariants based on open Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations. This is analogous to the result of Kontsevich–Manin for closed Gromov–Witten invariants. For greater generality, we base the argument on a formal object, the Frobenius superpotential, that generalizes several ...
Roi Blumberg, Sara B. Tukachinsky
wiley +1 more source

