Results 141 to 150 of about 1,106 (166)

Maximal tori of some symplectomorphism groups and applications to convexity

open access: green, 1997
Anthony M. Bloch   +3 more
openalex   +1 more source

Exact Symplectomorphism Group

Journal Africain des Sciences
Dans leurs travaux conjoints, J.Sniatyki et W.Tulczyjew ont caractérisé les difféomorphismes symplectiques par la géométrie de sous-variétés lagrangiennes.
Fidèle Balibuno Luganda
semanticscholar   +2 more sources

Geodesics On The Symplectomorphism Group

Geometric and Functional Analysis, 2012
Let \(M\) be a compact smooth manifold and consider the problem of determining the motion of an incompressible fluid that fills \(M\), which is encoded in the Euler equations \(\partial_t u+\nabla_u u=-\nabla p\), \(\text{div} \enskip {u}=0\), where \(u(x,t)\) represents the velocity field of the fluid at \(x\in M\) at time \(t\) and \(p\) is the ...
D. Ebin
semanticscholar   +2 more sources

No C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-recurrence of iterations of symplectomorphism

Geometriae Dedicata, 2023
In this article, we study the behaviour of iterations of symplectomorphisms and Hamiltonian diffeomorphisms on symplectic manifolds. We prove that there is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \
Yoshihiro Sugimoto
semanticscholar   +1 more source

The Dixmier–Douady class, the action homomorphism, and group cocycles on the symplectomorphism group

Mathematische Zeitschrift, 2020
Let X be a one-connected and integral symplectic manifold. In this paper, we construct and study a two-cocycle and three-cocycle on the symplectomorphism group of X.
Shuhei Maruyama
semanticscholar   +1 more source

Density of a thin film billiard reflection pseudogroup in a Hamiltonian symplectomorphism pseudogroup

Israel Journal of Mathematics, 2020
Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C ^∞-smooth hypersurface γ ⊂ ℝ^ n +1 that is either a global strictly convex closed ...
A. Glutsyuk
semanticscholar   +1 more source

LINEAR AUTOMORPHISMS THAT ARE SYMPLECTOMORPHISMS

Journal of the London Mathematical Society, 2004
The authors consider special linear automorphisms of a \(2n\)-dimensional symplectic vector space \((X,\omega)\), where \(X\) is either \(\mathbb{R}^{2n}\) or \(\mathbb{C}^{2n}\) and \(\omega\) is a bilinear non-degenerate skew-symmetric form on \(X\). A linear automorphism \(F:X\rightarrow X\) is called a symplectomorphism if \(F^{*}\omega=\omega\), i.
Jelonek, Z., Janeczko, S.
openaire   +3 more sources

Symplectic (−2)-spheres and the symplectomorphism group of small rational 4-manifolds

Pacific Journal of Mathematics, 2016
For $(\mathbb{C} P^2 \# 5{\overline {\mathbb{C} P^2}},\omega)$, let $N_{\omega}$ be the number of $(-2)$-symplectic spherical homology classes.We completely determine the Torelli symplectic mapping class group (Torelli SMCG): the Torelli SMCG is trivial ...
Jun Li, Tian-Jun Li
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy