Results 141 to 150 of about 1,106 (166)
Symplectic homology for symplectomorphism and symplectic isotopy problem [PDF]
Igor Uljarević
openalex
Maximal tori of some symplectomorphism groups and applications to convexity
Anthony M. Bloch +3 more
openalex +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
Journal Africain des Sciences
Dans leurs travaux conjoints, J.Sniatyki et W.Tulczyjew ont caractérisé les difféomorphismes symplectiques par la géométrie de sous-variétés lagrangiennes.
Fidèle Balibuno Luganda
semanticscholar +2 more sources
Dans leurs travaux conjoints, J.Sniatyki et W.Tulczyjew ont caractérisé les difféomorphismes symplectiques par la géométrie de sous-variétés lagrangiennes.
Fidèle Balibuno Luganda
semanticscholar +2 more sources
Geodesics On The Symplectomorphism Group
Geometric and Functional Analysis, 2012Let \(M\) be a compact smooth manifold and consider the problem of determining the motion of an incompressible fluid that fills \(M\), which is encoded in the Euler equations \(\partial_t u+\nabla_u u=-\nabla p\), \(\text{div} \enskip {u}=0\), where \(u(x,t)\) represents the velocity field of the fluid at \(x\in M\) at time \(t\) and \(p\) is the ...
D. Ebin
semanticscholar +2 more sources
Geometriae Dedicata, 2023
In this article, we study the behaviour of iterations of symplectomorphisms and Hamiltonian diffeomorphisms on symplectic manifolds. We prove that there is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \
Yoshihiro Sugimoto
semanticscholar +1 more source
In this article, we study the behaviour of iterations of symplectomorphisms and Hamiltonian diffeomorphisms on symplectic manifolds. We prove that there is a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \
Yoshihiro Sugimoto
semanticscholar +1 more source
The Dixmier–Douady class, the action homomorphism, and group cocycles on the symplectomorphism group
Mathematische Zeitschrift, 2020Let X be a one-connected and integral symplectic manifold. In this paper, we construct and study a two-cocycle and three-cocycle on the symplectomorphism group of X.
Shuhei Maruyama
semanticscholar +1 more source
Israel Journal of Mathematics, 2020
Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C ^∞-smooth hypersurface γ ⊂ ℝ^ n +1 that is either a global strictly convex closed ...
A. Glutsyuk
semanticscholar +1 more source
Reflections from hypersurfaces act by symplectomorphisms on the space of oriented lines with respect to the canonical symplectic form. We consider an arbitrary C ^∞-smooth hypersurface γ ⊂ ℝ^ n +1 that is either a global strictly convex closed ...
A. Glutsyuk
semanticscholar +1 more source
LINEAR AUTOMORPHISMS THAT ARE SYMPLECTOMORPHISMS
Journal of the London Mathematical Society, 2004The authors consider special linear automorphisms of a \(2n\)-dimensional symplectic vector space \((X,\omega)\), where \(X\) is either \(\mathbb{R}^{2n}\) or \(\mathbb{C}^{2n}\) and \(\omega\) is a bilinear non-degenerate skew-symmetric form on \(X\). A linear automorphism \(F:X\rightarrow X\) is called a symplectomorphism if \(F^{*}\omega=\omega\), i.
Jelonek, Z., Janeczko, S.
openaire +3 more sources
Symplectic (−2)-spheres and the symplectomorphism group of small rational 4-manifolds
Pacific Journal of Mathematics, 2016For $(\mathbb{C} P^2 \# 5{\overline {\mathbb{C} P^2}},\omega)$, let $N_{\omega}$ be the number of $(-2)$-symplectic spherical homology classes.We completely determine the Torelli symplectic mapping class group (Torelli SMCG): the Torelli SMCG is trivial ...
Jun Li, Tian-Jun Li
semanticscholar +1 more source

