Results 41 to 50 of about 1,106 (166)
Lagrangian foliations and Anosov symplectomorphisms on Kähler manifolds [PDF]
AbstractWe investigate parallel Lagrangian foliations on Kähler manifolds. On the one hand, we show that a Kähler metric admitting a parallel Lagrangian foliation must be flat. On the other hand, we give many examples of parallel Lagrangian foliations on closed flat Kähler manifolds which are not tori.
M. J. D. HAMILTON, D. KOTSCHICK
openaire +3 more sources
Maximal symplectic torus actions
Abstract There are several different notions of maximal torus actions on smooth manifolds, in various contexts: symplectic, Riemannian, complex. In the symplectic context, for the so‐called isotropy‐maximal actions, as well as for the weaker notion of almost isotropy‐maximal actions, we give classifications up to equivariant symplectomorphism.
Rei Henigman
wiley +1 more source
Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group
Let $M$ be a closed symplectic manifold with compatible symplectic form and Riemannian metric $g$. Here it is shown that the exponential mapping of the weak $L^{2}$ metric on the group of symplectic diffeomorphisms of $M$ is a non-linear Fredholm map of ...
J. Benn
semanticscholar +1 more source
The contact cut graph and a Weinstein L$\mathcal {L}$‐invariant
Abstract We define and study the contact cut graph which is an analogue of Hatcher and Thurston's cut graph for contact geometry, inspired by contact Heegaard splittings (Giroux, Proceedings of the International Congress of Mathematicians, Beijing, 2002; Torisu, Internat. Math. Res. Notices (2000), 441–454).
Nickolas A. Castro +5 more
wiley +1 more source
Floer theory for the variation operator of an isolated singularity
Abstract The variation operator in singularity theory maps relative homology cycles to compact cycles in the Milnor fiber using the monodromy. We construct its symplectic analog for an isolated singularity. We define the monodromy Lagrangian Floer cohomology, which provides categorifications of the standard theorems on the variation operator and the ...
Hanwool Bae +3 more
wiley +1 more source
Persistence of unknottedness of clean Lagrangian intersections
Abstract Let Q0$Q_0$ and Q1$Q_1$ be two Lagrangian spheres in a six‐dimensional symplectic manifold. Assume that Q0$Q_0$ and Q1$Q_1$ intersect cleanly along a circle that is unknotted in both Q0$Q_0$ and Q1$Q_1$. We prove that there is no nearby Hamiltonian isotopy of Q0$Q_0$ and Q1$Q_1$ to a pair of Lagrangian spheres meeting cleanly along a circle ...
Johan Asplund, Yin Li
wiley +1 more source
Abstract We prove that (under appropriate orientation assumptions), the action of a Hamiltonian homeomorphism ϕ$\phi$ on the cohomology of a relatively exact Lagrangian fixed by ϕ$\phi$ is the identity. This extends results of Hu–Lalonde–Leclercq [Geom. Topol. 15 (2011), no. 3, 1617–1650] and the author [Selecta Math. (N.S.) 30 (2024), no. 2, Paper No.
Noah Porcelli
wiley +1 more source
Holomorphic field theories and higher algebra
Abstract Aimed at complex geometers and representation theorists, this survey explores higher dimensional analogs of the rich interplay between Riemann surfaces, Virasoro and Kac‐Moody Lie algebras, and conformal blocks. We introduce a panoply of examples from physics — field theories that are holomorphic in nature, such as holomorphic Chern‐Simons ...
Owen Gwilliam, Brian R. Williams
wiley +1 more source
Exponential actions defined by vector configurations, Gale duality, and moment‐angle manifolds
Abstract Exponential actions defined by vector configurations provide a universal framework for several constructions of holomorphic dynamics, non‐Kähler complex geometry, toric geometry and topology. These include leaf spaces of holomorphic foliations, intersections of real and Hermitian quadrics, the quotient construction of simplicial toric ...
Taras Panov
wiley +1 more source
Taking limits in topological recursion
Abstract When does topological recursion applied to a family of spectral curves commute with taking limits? This problem is subtle, especially when the ramification structure of the spectral curve changes at the limit point. We provide sufficient (straightforward‐to‐use) conditions for checking when the commutation with limits holds, thereby closing a ...
Gaëtan Borot +4 more
wiley +1 more source

