Results 51 to 60 of about 1,106 (166)
The translation number and quasi-morphisms on groups of symplectomorphisms of the disk [PDF]
Shuhei Maruyama
openalex +1 more source
On classical solutions and canonical transformations for Hamilton–Jacobi–Bellman equations
Abstract In this note, we show how canonical transformations reveal hidden convexity properties for deterministic optimal control problems, which in turn result in global existence of Cloc1,1$C^{1,1}_{loc}$ solutions to first‐order Hamilton–Jacobi–Bellman equations.
Mohit Bansil, Alpár R. Mészáros
wiley +1 more source
Orbifold Kodaira–Spencer maps and closed‐string mirror symmetry for punctured Riemann surfaces
Abstract When a Weinstein manifold admits an action of a finite abelian group, we propose its mirror construction following the equivariant 2D TQFT‐type construction, and obtain as a mirror the orbifolding of the mirror of the quotient with respect to the induced dual group action. As an application, we construct an orbifold Landau–Ginzburg mirror of a
Hansol Hong, Hyeongjun Jin, Sangwook Lee
wiley +1 more source
Lagrangian approximation of totally real concordances
Abstract We show that a two‐dimensional totally real concordance can be approximated by a Lagrangian concordance whose Legendrian boundary has been stabilised both positively and negatively sufficiently many times. The main applications that we provide are constructions of knotted Lagrangian concordances in arbitrary four‐dimensional symplectisations ...
Georgios Dimitroglou Rizell
wiley +1 more source
Abstract Given an associative C$\mathbb {C}$‐algebra A$A$, we call A$A$ strongly rigid if for any pair of finite subgroups of its automorphism groups G,H$G, H$, such that AG≅AH$A^G\cong A^H$, then G$G$ and H$H$ must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid.
Akaki Tikaradze
wiley +1 more source
Augmented Polynomial Symplectomorphisms and Quantization
The objective of this paper is the proof of a conjecture of Kontsevich on the isomorphism between groups of polynomial symplectomorphisms and automorphisms of the corresponding Weyl algebra in characteristic zero. The proof is based on the study of topological properties of automorphism $\Ind$-varieties of the so-called augmented and skew augmented ...
Kanel-Belov, Alexei +2 more
openaire +2 more sources
Double Copy From Tensor Products of Metric BV■‐Algebras
Abstract Field theories with kinematic Lie algebras, such as field theories featuring color–kinematics duality, possess an underlying algebraic structure known as BV■‐algebra. If, additionally, matter fields are present, this structure is supplemented by a module for the BV■‐algebra.
Leron Borsten +5 more
wiley +1 more source
Curvature of quaternionic skew‐Hermitian manifolds and bundle constructions
Abstract This paper is devoted to a description of the second‐order differential geometry of torsion‐free almost quaternionic skew‐Hermitian manifolds, that is, of quaternionic skew‐Hermitian manifolds (M,Q,ω)$(M, Q, \omega)$. We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic ...
Ioannis Chrysikos +2 more
wiley +1 more source
Open String Renormalization Group Flow as a Field Theory
Abstract This article shows that the integral flow‐lines of the RG‐flow of open string theory can be interpreted as the solitons of a Hořova–Lifshitz sigma‐model of open membranes. The authors argue that the effective background description of this model implies the g‐theorem of open string theory.
Julius Hristov
wiley +1 more source
Codimension two mean curvature flow of entire graphs
Abstract We consider the graphical mean curvature flow of maps f:Rm→Rn$\mathbf {f}:{\mathbb {R}^{m}}\rightarrow {\mathbb {R}^{n}}$, m⩾2$m\geqslant 2$, and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well‐known maximum principle of Ecker ...
Andreas Savas Halilaj, Knut Smoczyk
wiley +1 more source

