Results 201 to 210 of about 6,695,929 (231)
Dual targeting of AKT and mTOR using MK2206 and RAD001 reduces tumor burden in an intracardiac colon cancer circulating tumor cell xenotransplantation model. Analysis of AKT isoform‐specific knockdowns in CTC‐MCC‐41 reveals differentially regulated proteins and phospho‐proteins by liquid chromatography coupled mass spectrometry. Circulating tumor cells
Daniel J. Smit+19 more
wiley +1 more source
Inhibitor of DNA binding‐1 is a key regulator of cancer cell vasculogenic mimicry
Elevated expression of transcriptional regulator inhibitor of DNA binding 1 (ID1) promoted cancer cell‐mediated vasculogenic mimicry (VM) through regulation of pro‐angiogenic and pro‐cancerous genes (e.g. VE‐cadherin (CDH5), TIE2, MMP9, DKK1). Higher ID1 expression also increased metastases to the lung and the liver.
Emma J. Thompson+11 more
wiley +1 more source
Table of Contents, Vol. 6, no. 1. Populorum Progressio: 50 Years
Table of Contents
doaj
Alectinib resistance in ALK+ NSCLC depends on treatment sequence and EML4‐ALK variants. Variant 1 exhibited off‐target resistance after first‐line treatment, while variant 3 and later lines favored on‐target mutations. Early resistance involved off‐target alterations, like MET and NF2, while on‐target mutations emerged with prolonged therapy.
Jie Hu+11 more
wiley +1 more source
B‐cell chronic lymphocytic leukemia (B‐CLL) and monoclonal B‐cell lymphocytosis (MBL) show altered proteomes and phosphoproteomes, analyzed using mass spectrometry, protein microarrays, and western blotting. Identifying 2970 proteins and 316 phosphoproteins, including 55 novel phosphopeptides, we reveal BCR and NF‐kβ/STAT3 signaling in disease ...
Paula Díez+17 more
wiley +1 more source
Ubiquitination of transcription factors in cancer: unveiling therapeutic potential
In cancer, dysregulated ubiquitination of transcription factors contributes to the uncontrolled growth and survival characteristics of tumors. Tumor suppressors are degraded by aberrant ubiquitination, or oncogenic transcription factors gain stability through ubiquitination, thereby promoting tumorigenesis.
Dongha Kim, Hye Jin Nam, Sung Hee Baek
wiley +1 more source