Results 111 to 120 of about 252,160 (293)
Shape‐Changing Multiphase Microparticles from Complex Liquid Crystal Emulsions
Liquid crystalline network (LCN) microparticles are prepared from single, double (Janus), and triple emulsions through a simple and scalable bulk‐emulsification strategy. Under heating, the particles exhibit robust, reversible, large‐amplitude deformations that depend both on the morphology and the liquid crystals director field configuration.
Marco Turriani +3 more
wiley +1 more source
For the designing and management of energy production and storage systems, the prediction of household short-term energy consumption is of vital importance.
Fazli Wahid, Do Hyeun Kim
doaj
Membrane vesicles derived from the probiotic Lacticaseibacillus casei BL23 demonstrate antimicrobial properties against Escherichia coli and a potential biological effect in improving the overall survival of C. elegans infected with Pseudomonas aeruginosa. These vesicles stimulated immune responses in primary cells without causing toxicity. Our results
Cecilia L. D'Antoni +11 more
wiley +1 more source
Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle [PDF]
An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on
Penland, J. A., Pittman, J. L.
core +1 more source
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley +1 more source
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans +11 more
wiley +1 more source
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Computational Modeling Meets 3D Bioprinting: Emerging Synergies in Cardiovascular Disease Modeling
Emerging advances in three‐dimensional bioprinting and computational modeling are reshaping cardiovascular (CV) research by enabling more realistic, patient‐specific tissue platforms. This review surveys cutting‐edge approaches that merge biomimetic CV constructs with computational simulations to overcome the limitations of traditional models, improve ...
Tanmay Mukherjee +7 more
wiley +1 more source
Hybrid Scaffolds Decouple Biochemical & Biophysical Regulation of Cell Phenotype
Replicating tissue‐specific extracellular matrix is crucial for understanding its role in disease. This work demonstrates independent control over stiffness, composition and 3D collagen architecture using hybrid scaffolds: patterned collagen perfused with defined hydrogels.
Xinyuan Song +17 more
wiley +1 more source
Isolation Defines Identity: Functional Consequences of Extracellular Vesicle Purification Strategies
Four extracellular vesicle purification strategies are compared using ovarian‐cancer ascites and ES‐2 cell supernatants. A novel workflow links purification to function by combining particle‐normalized proteomics with matched cell‐free and cell‐based assays.
Christian Preußer +10 more
wiley +1 more source

