Results 221 to 230 of about 170,600 (365)

Dual‐Phased Molybdenum Carbides Confined in MOF‐Derived Carbon Nanoframes Enhance Capacitive Desalination

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐phase MoC/Mo2C/CoNC nanoframes are synthesized via a MOF‐on‐MOF strategy, demonstrating a large salt adsorption capacity, a low energy consumption, and an excellent cycling stability. In situ/ex situ characterizations and DFT calculations reveal that the MoC/Mo2C dual phase transition facilitates Na+ adsorption/desorption, while interface‐induced ...
Feifei Pang   +8 more
wiley   +1 more source

Protection of metal interfaces against hydrogen-assisted cracking. [PDF]

open access: yesNat Commun
Hachet G   +10 more
europepmc   +1 more source

Statistical Guarantees for Data-driven Posterior Tempering

open access: green
Ruchira Ray   +2 more
openalex   +1 more source

In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang   +19 more
wiley   +1 more source

Investigating the strength effects of drilling in tempered glass

open access: green, 2019
Jens Henrik Nielsen   +4 more
openalex   +2 more sources

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy