Results 171 to 180 of about 92,710 (270)

Nanozyme Microrobots: Programmable Spatiotemporal Catalysis for Targeted Therapy and Diagnostics

open access: yesAdvanced Science, EarlyView.
This review presents nanozyme microrobots as emerging catalytic systems that integrate mobility, external actuation, and adaptive reactivity to achieve precise biochemical functions. By examining mobility‐regulated catalysis, spatial targeting, integrated designs, and translational demonstrations, the article highlights how nanozyme robotics enables ...
Hong Huy Tran   +5 more
wiley   +1 more source

Recent Progress and Opportunities in Oxide Semiconductor Devices for In‐Memory and Neuromorphic Computing

open access: yesAdvanced Electronic Materials, EarlyView.
This review surveys oxide‐semiconductor devices for in‐memory and neuromorphic computing, highlighting recent progress and remaining challenges in charge‐trap, ferroelectric, and two‐transistor devices. Oxide semiconductors, featuring ultra‐low leakage, low‐temperature processing, and back‐end‐of‐line compatibility, are explored for analog in‐memory ...
Suwon Seong   +4 more
wiley   +1 more source

Direct data-driven control with signal temporal logic specifications

open access: diamond
B.C. van Huijgevoort   +3 more
openalex   +1 more source

RRAM Variability Harvesting for CIM‐Integrated TRNG

open access: yesAdvanced Electronic Materials, EarlyView.
This work demonstrates a compute‐in‐memory‐compatible true random number generator that harvests intrinsic cycle‐to‐cycle variability from a 1T1R RRAM array. Parallel entropy extraction enables high‐throughput bit generation without dedicated circuits. This approach achieves NIST‐compliant randomness and low per‐bit energy, offering a scalable hardware
Ankit Bende   +4 more
wiley   +1 more source

Reversible and Controllable Transition Between Filamentary and Interfacial Resistive Switching in HfO2‐Based Memristors

open access: yesAdvanced Electronic Materials, EarlyView.
5 nm HfO2 memristors exhibit a fully reversible, voltage‐controlled transition between filamentary and interfacial switching within the same device. At high voltages, a filament forms and dominates the conduction, whereas at lower voltages the device reversibly returns to interfacial mode without defect accumulation, implying a new reversible ...
Cuo Wu   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy