Results 161 to 170 of about 486,491 (240)

Stretching‐Orientation Reinforced Double Network Solvent‐Free Eutectic Gels for Ultrarobust, Flexible Human‐Machine Interaction Devices

open access: yesAdvanced Functional Materials, EarlyView.
This work develops an ultrarobust, flexible, and solvent‐free eutectic gel featuring stretch‐induced orientation. Overcoming hydrogel limitations, the gel achieves record toughness (133.86 MJ m−3) while integrating strain/temperature/capacitive sensing.
Tingzhong Li   +5 more
wiley   +1 more source

3D Concrete Printing of Triply Periodic Minimum Surfaces for Enhanced Carbon Capture and Storage

open access: yesAdvanced Functional Materials, EarlyView.
A 3D‐printable and carbon‐capturing concrete is developed by replacing cement with diatomaceous earth (DE), which enhances rheology, provides hierarchical porosity, and serves as a nucleation site for carbonation. Maximum absorption of 488.7 gCO2 kgcement−1 is achieved in 7 days, a 142% increase over conventional concrete, and the triply periodic ...
Kun‐Hao Yu   +9 more
wiley   +1 more source

Antioxidant and Anti‐Senescence Polyvinyl Alcohol‐Gallic Acid Supramolecular Hydrogels for Stem Cell Culture

open access: yesAdvanced Healthcare Materials, EarlyView.
The PVA‐GA hydrogel is formed through hydrogen bonding between PVA hydroxyl groups and GA galloyl units, enabling sustainable GA release and its extended biological activity. The hydrogel scavenges ROS to reduce oxidative stress, preventing mitochondrial damage from excessive ROS, mitigating hADSC senescence, and preserving VEGF secretion, offering a ...
Yiduo Zhou   +11 more
wiley   +1 more source

Graded Hydroxyapatite Triply Periodic Minimal Surface Structures for Bone Tissue Engineering Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates the role of triply periodic minimal structures in load bearing bone tissue engineering applications. Research uses a combination of mechanical testing, material characterization, and in vitro tests to study the impact of TPMS lattice structures (gyroid, lidinoid and split‐P).
Tejas M. Koushik   +2 more
wiley   +1 more source

Controlled Magnesium Ion Delivery via Mg‐Sputtered Nerve Conduit for Enhancing Peripheral Nerve Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a controllable degradation system for Mg‐based biomaterials using sputtering technology, marking a significant advancement in nerve regeneration research. The Mg‐sputtered nerve conduits demonstrate enhanced biocompatibility, biofunctionality, mechanical compatibility, and precise magnesium release, resulting in improved axonal ...
Hyewon Kim   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy