Results 101 to 110 of about 2,754 (231)
A codesign multiobjective optimization framework was developed to enhance the morphology and controller of a snake‐like robot driven by artificial muscles. It improved planar locomotion, agility, and power efficiency. The approach optimized link geometry and controller gains, revealing that shorter muscles near joints and longer linkages maximize ...
Ayla Valles, Mahdi Haghshenas‐Jaryani
wiley +1 more source
Hard‐Magnetic Soft Millirobots in Underactuated Systems
This review provides a comprehensive overview of hard‐magnetic soft millirobots in underactuated systems. It examines key advances in structural design, physics‐informed modeling, and control strategies, while highlighting the interplay among these domains.
Qiong Wang +4 more
wiley +1 more source
3D Printing of Soft Robotic Systems: Advances in Fabrication Strategies and Future Trends
Collectively, this review systematically examines 3D‐printed soft robotics, encompassing material selections, function integration, and manufacturing methodologies. Meanwhile, fabrication strategies are analyzed in order of increasing complexity, highlighting persistent challenges with proposed solutions.
Changjiang Liu +5 more
wiley +1 more source
The coherent structures of EVP fluid flow past a circular cylinder. [PDF]
Corrochano A +4 more
europepmc +1 more source
Edible robotics is an emerging field that leverages edible materials to construct robotic systems. This study presents a method to create thin, lightweight, yet powerful edible soft actuators, namely edible pouch motors. The successful operation of these edible actuators and grippers renders their potential to advance future developments in edible ...
Keigo Takahashi +3 more
wiley +1 more source
Hyperspectral Imaging Techniques for Lyophilization: Advances in Data-Driven Modeling Strategies and Applications. [PDF]
Yu H +5 more
europepmc +1 more source
Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza +3 more
wiley +1 more source
Directional adaptive mode total variation for seismic data denoising. [PDF]
Banjade TP +4 more
europepmc +1 more source
Origami‐Inspired Structural Design for Aquatic‐Terrestrial Amphibious Robots
This work presents a lightweight amphibious origami robot actuated by a single shape memory alloy wire. A rigid foldable origami structure with displacement amplification enables efficient terrestrial crawling and aquatic swimming. The addition of fan‐shaped units allows controllable turning in both environments.
Weiqi Liu +5 more
wiley +1 more source
A predictive model for 3D printability is developed by integrating rheological analysis, including the Large Amplitude Oscillatory Shear (LAOS) test, with machine learning. With prediction errors under 10%, the model shows that post‐extrusion recovery controls horizontal printability, while high‐strain‐rate nozzle flow dictates vertical printability ...
Eun Hui Jeong +7 more
wiley +1 more source

