Results 21 to 30 of about 12,136 (308)
We present an analysis of a volume-complete sample of 363 mid-to-late M dwarfs within 15 pc of the Sun with masses between 0.1 and 0.3 M _⊙ observed by TESS within sectors 1–42. The median stellar mass of the sample is 0.17 M _⊙ .
Kristo Ment, David Charbonneau
doaj +1 more source
Terrestrial planet compositions controlled by accretion disk magnetic field
Terrestrial planets (Mercury, Venus, Earth, and Mars) are differentiated into three layers: a metallic core, a silicate shell (mantle and crust), and a volatile envelope of gases, ices, and, for the Earth, liquid water.
William F. McDonough, Takashi Yoshizaki
doaj +1 more source
We model the early stages of planet formation in the solar system, including continual planetesimal formation, and planetesimal and pebble accretion onto planetary embryos in an evolving disk driven by a disk wind.
John Chambers
doaj +1 more source
Mars: a small terrestrial planet [PDF]
Mars is characterized by geological landforms familiar to terrestrial geologists. It has a tenuous atmosphere that evolved differently from that of Earth and Venus and a differentiated inner structure. Our knowledge of the structure and evolution of Mars has strongly improved thanks to a huge amount of data of various types (visible and infrared ...
Mangold, N. +4 more
openaire +4 more sources
TOI-1695 b: A Water World Orbiting an Early-M Dwarf in the Planet Radius Valley
Characterizing the bulk compositions of transiting exoplanets within the M dwarf radius valley offers a unique means to establish whether the radius valley emerges from an atmospheric mass-loss process or is imprinted by planet formation itself.
Collin Cherubim +41 more
doaj +1 more source
Formation of telluric planets and the origin of terrestrial water
Simulations of planet formation have failed to reproduce Mars’ small mass (compared with Earth) for 20 years. Here I will present a solution to the Mars problem that invokes large-scale migration of Jupiter and Saturn while they were still embedded in ...
Raymond Sean
doaj +1 more source
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source
Characterizing Earth-like planets with terrestrial planet finder [PDF]
SPIE Proceedings, Future Research Direction and Visions for Astronomy, 8 pages, pdf ...
Seager, S., Ford, E. B., Turner, E. L.
openaire +2 more sources
Time after time – circadian clocks through the lens of oscillator theory
Oscillator theory bridges physics and circadian biology. Damped oscillators require external drivers, while limit cycles emerge from delayed feedback and nonlinearities. Coupling enables tissue‐level coherence, and entrainment aligns internal clocks with environmental cues.
Marta del Olmo +2 more
wiley +1 more source
Migration & Extra-solar Terrestrial Planets: Watering the Planets [PDF]
AbstractA diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b).
Carter-Bond, Jade C. +2 more
openaire +2 more sources

