Results 181 to 190 of about 267,041 (289)

What Do Large Language Models Know About Materials?

open access: yesAdvanced Engineering Materials, EarlyView.
If large language models (LLMs) are to be used inside the material discovery and engineering process, they must be benchmarked for the accurateness of intrinsic material knowledge. The current work introduces 1) a reasoning process through the processing–structure–property–performance chain and 2) a tool for benchmarking knowledge of LLMs concerning ...
Adrian Ehrenhofer   +2 more
wiley   +1 more source

A Workflow to Accelerate Microstructure‐Sensitive Fatigue Life Predictions

open access: yesAdvanced Engineering Materials, EarlyView.
This study introduces a workflow to accelerate predictions of microstructure‐sensitive fatigue life. Results from frameworks with varying levels of simplification are benchmarked against published reference results. The analysis reveals a trade‐off between accuracy and model complexity, offering researchers a practical guide for selecting the optimal ...
Luca Loiodice   +2 more
wiley   +1 more source

Interactions between Molten High‐Silicon Electrical Steels and Carbon‐Bonded MgO Refractories Based on Recyclates

open access: yesAdvanced Engineering Materials, EarlyView.
This study examines how several molten high‐silicon electrical steels interact with both conventional and recycled MgO–C refractories. For this, various immersion experiments are conducted. In addition to infiltration, a number of mechanisms are identified and explained that control the corrosion of the refractory material.
Lukas Neubert   +7 more
wiley   +1 more source

Hybrid Auxetic Architectures: Integrating Curvature‐Driven Design for Enhanced Mechanical Tunability and Structural Performance

open access: yesAdvanced Engineering Materials, EarlyView.
Curvature‐tuned auxetic lattices are designed, fabricated, and mechanically characterized to reveal how geometric curvature governs stretchability, stress redistribution, and Poisson's ratio evolution. Photoelastic experiments visualize stress pathways, while hyperelastic simulations quantify deformation mechanics.
Shuvodeep De   +3 more
wiley   +1 more source

Multimodal Mechanical Testing of Additively Manufactured Ti6Al4V Lattice Structures: Compression, Bending, and Fatigue

open access: yesAdvanced Engineering Materials, EarlyView.
In this experimental study, the mechanical properties of additively manufactured Ti‐6Al‐4V lattice structures of different geometries are characterized using compression, four point bending and fatigue testing. While TPMS designs show superior fatigue resistance, SplitP and Honeycomb lattice structures combine high stiffness and strength. The resulting
Klaus Burkart   +3 more
wiley   +1 more source

Manufacturing Continuous Fiber‐Reinforced Printing Filaments: Development of a Post‐Consolidation Unit

open access: yesAdvanced Engineering Materials, EarlyView.
A novel, temperature‐controlled post‐consolidation unit is developed to test its potential to improve the melt impregnation process used to manufacture continuous fiber‐reinforced filaments for additive manufacturing of high‐performance thermoplastics.
Daniel Beermann   +2 more
wiley   +1 more source

Unidirectional Tape‐Based Composites from Hemp and Pineapple Leaf Fiber: Mechanical Performance in Conventional and Bio‐Based Matrices

open access: yesAdvanced Engineering Materials, EarlyView.
The study investigates novel semi‐finished products made of unidirectionally arranged hemp or pineapple leaf fiber‐reinforced composites produced from different matrices. The materials are analyzed in terms of their mechanical and interfacial properties and void content.
Nina Graupner   +22 more
wiley   +1 more source

Enhancing healthcare outcome with scalable processing and predictive analytics via cloud healthcare API. [PDF]

open access: yesFront Digit Health
Salehi SS   +7 more
europepmc   +1 more source

Can Ti‐Based MXenes Serve as Solid Lubricants for Brake Applications? A Tribological Study

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores the first implementation of Ti‐based MXenes materials in brake pad friction composite material. The resulting composite material exhibits a 48% reduction in the wear rate; alongside significant improvements are observed for thermal and mechanical properties.
Eslam Mahmoud   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy