Results 111 to 120 of about 716,263 (297)
TEXT MINING TECHNOLOGY TO SUPPORT ENTERPRISE KNOWLEDGE MANAGEMENT [PDF]
A successful flexible enterprise must have an organization knowledge-based. In an era characterized by change, globalization and competition, knowledge is without doubt the most important asset for a company to gain a competitive advantage.
Domenico CONSOLI
core
Designing Memristive Materials for Artificial Dynamic Intelligence
Key characteristics required of memristors for realizing next‐generation computing, along with modeling approaches employed to analyze their underlying mechanisms. These modeling techniques span from the atomic scale to the array scale and cover temporal scales ranging from picoseconds to microseconds. Hardware architectures inspired by neural networks
Youngmin Kim, Ho Won Jang
wiley +1 more source
A multimodal fusion pipeline predicts high‐resolution ion distributions in imaging mass spectrometry by integrating Fourier transform ion cyclotron resonance, time‐of‐flight matrix‐assisted laser desorption/ionization, and time‐of‐flight secondary ion mass spectrometry data.
Md Inzamam Ul Haque +7 more
wiley +1 more source
Inverse Engineering of Mg Alloys Using Guided Oversampling and Semi‐Supervised Learning
End‐to‐end design of engineering materials such as Mg alloys must include the properties, structure, and post‐synthesis processing methods. However, this is challenging when destructive mechanical testing is needed to annotate unseen data, and the processing methods for hypothetical alloys are unknown.
Amanda S. Barnard
wiley +1 more source
Information Dense and Industry Scalable Accelerated Formation
Pulsed formation can reduce lithium‐ion battery formation time by over 50% while maintaining or enhancing performance. Validated on 25 Ah prismatic cells, this industry‐scalable method yields thinner, more homogeneous solid electrolyte interphases (SEIs).
Leon Merker +3 more
wiley +1 more source
This study applies QSAR‐based new approach methodologies to 90 synthetic tattoo and permanent makeup pigments, revealing systemic links between their physicochemical properties and absorption, distribution, metabolism, and elimination profiles. The correlation‐driven analysis using SwissADME, ChemBCPP, and principal component analysis uncovers insights
Girija Bansod +10 more
wiley +1 more source
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob +2 more
wiley +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Analysis and Implementation of Text Mining for Different Documents [PDF]
K. Maheswari, P. Packia Amutha Priya
openalex +1 more source
Named entity recognition pipeline for knowledge extraction from scientific literature. Machine learning interatomic potential (MLIP) is an emerging technique that has helped achieve molecular dynamics simulations with unprecedented balance between efficiency and accuracy. Recently, the body of MLIP literature has been growing rapidly, which propels the
Bowen Zheng, Grace X. Gu
wiley +1 more source

