Results 131 to 140 of about 716,263 (297)

Bayesian Optimization Guiding the Experimental Mapping of the Pareto Front of Mechanical and Flame‐Retardant Properties in Polyamide Nanocomposites

open access: yesAdvanced Intelligent Discovery, EarlyView.
Bayesian optimization enabled the design of PA56 system with just 8 wt% additives, achieving limiting oxygen index 30.5%, tensile strength 80.9 MPa, and UL‐94 V‐0 rating. Without prior knowledge, the algorithm uncovered synergistic effects between aluminum diethyl‐phosphinate and nanoclay.
Burcu Ozdemir   +4 more
wiley   +1 more source

Artificial Intelligence‐Driven Insights into Electrospinning: Machine Learning Models to Predict Cotton‐Wool‐Like Structure of Electrospun Fibers

open access: yesAdvanced Intelligent Discovery, EarlyView.
Electrospinning allows the fabrication of fibrous 3D cotton‐wool‐like scaffolds for tissue engineering. Optimizing this process traditionally relies on trial‐and‐error approaches, and artificial intelligence (AI)‐based tools can support it, with the prediction of fiber properties. This work uses machine learning to classify and predict the structure of
Paolo D’Elia   +3 more
wiley   +1 more source

Automatic learning of a concept relation dictionary for a text mining system

open access: bronze, 2002
Shigeaki Sakurai   +3 more
openalex   +2 more sources

Graph Attention Neural Networks for Interpretable and Generalizable Prediction of Janus III–Vi Van Der Waals Heterostructures

open access: yesAdvanced Intelligent Discovery, EarlyView.
A crystal graph neural network based on the attention mechanism is proposed in this work. The model dynamically weights features through the attention mechanism, enabling precise prediction of properties of material from structural features. Here, taking Janus III–VI van der Waals heterostructures as a representative case, the properties have been ...
Yudong Shi   +7 more
wiley   +1 more source

CrossMatAgent: AI‐Assisted Design of Manufacturable Metamaterial Patterns via Multi‐Agent Generative Framework

open access: yesAdvanced Intelligent Discovery, EarlyView.
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian   +12 more
wiley   +1 more source

Autonomous Machine Learning‐Based Classification and Arrangement of Submillimeter Objects Using a Capillary Force Gripper

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study presents an automated system integrating a capillary force gripper and machine learning‐based object detection for sorting and placing submillimeter objects. The system achieved stable and simultaneous manipulation of four object types, with an average task time of 86.0 seconds and a positioning error of 157 ± 84 µm, highlighting its ...
Satoshi Ando   +4 more
wiley   +1 more source

Text Mining in Python through the HTRC Feature Reader

open access: yesThe Programming Historian, 2016
We introduce a toolkit for working with the 13.6 million volume Extracted Features Dataset from the HathiTrust Research Center. You will learn how to peer at the words and trends of any book in the collection, while developing broadly useful Python data ...
Peter Organisciak, Boris Capitanu
doaj  

Inverse Design of Alloys via Generative Algorithms: Optimization and Diffusion within Learned Latent Space

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy