Harnessing Phase Dynamics Across Diverse Frequencies with Multifrequency Oscillatory Neural Networks
Oscillatory Neural Networks (ONNs) are an emerging computing paradigm that encodes information in the phases of coupled oscillators. Traditionally, ONNs have been investigated using homogeneous frequency oscillators. However, physical hardware implementations are inherently subject to frequency mismatches, device variability, and nonuniformities.
Nil Dinç +2 more
wiley +1 more source
Evaluation of Japanese instructor experiences in the first overseas BLS course certified by the Japanese association for acute medicine in Cambodia: a mixed-methods analysis using text mining. [PDF]
Ooya Y +5 more
europepmc +1 more source
Accelerating Biosensor Discovery: A Computationally‐Driven Pipeline for Microplastics Monitoring
A computationally guided pipeline unites molecular simulation, synthetic biology, electrochemical engineering, and machine learning to accelerate biosensor discovery. A Bacillus anthracis carbohydrate‐binding module is used to develop a high‐performance micro‐ and nanoplastics sensor with greatly reduced error and variability.
Gabriel X. Pereira +13 more
wiley +1 more source
Text Mining Strategy Identifies Gene Networks Under Control of miR-21 in Breast Cancer Development. [PDF]
Ye H, Wu Y, Tran R, Wang J.
europepmc +1 more source
In this work, the Doubao large language model (LLM) is involved in the formula derivation processes for Hubbard U determination regarding the second‐order perturbations of the chemical potential. The core ML tool is optimized for physical domain knowledge, which is not limited to parameter prediction but rather serves as an interactive physical theory ...
Mingzi Sun +8 more
wiley +1 more source
Tracking 35 years of progress in metallic materials for extreme environments via text mining. [PDF]
Wang X, Raj A, Su Y, Xu S, Lu K.
europepmc +1 more source
Development of Total Environment for Text Data Mining
Wataru Sunayama +6 more
openalex +2 more sources
This study introduces FIRE‐GNN, a force‐informed, relaxed equivariant graph neural network for predicting surface work functions and cleavage energies from slab structures. By incorporating surface‐normal symmetry breaking and machine learning interatomic potential‐derived force information, the approach achieves state‐of‐the‐art accuracy and enables ...
Circe Hsu +5 more
wiley +1 more source
Enabling near real time use of wildlife necropsy data: Text-mining approaches to derive interactive dashboard displays. [PDF]
Saverimuttu S +8 more
europepmc +1 more source
This study reveals that sampling strategy (i.e., sampling size and approach) is a foundational prerequisite for building accurate and generalizable AI models in peptide discovery. Reaching a threshold of 7.5% of the total tetrapeptide sequence space was essential to ensure reliable predictions.
Meiru Yan +3 more
wiley +1 more source

