Results 191 to 200 of about 440,568 (390)
Selective Laser Sintering 3D Printing of Drug‐Loaded Intravitreal Implants
Selective laser sintering enables the fabrication of biodegradable and biocompatible intravitreal implants with tunable microstructures for sustained drug delivery. By modulating laser scanning speed, the polymer matrix architecture is engineered to control the release kinetics of dexamethasone and riboflavin over several months. This approach offers a
Iria Seoane‐Viaño+5 more
wiley +1 more source
The senning operation without intracardiac patch for TGA in infancy.
K. Todo
openalex +2 more sources
Biomass pyrolysis TGA assessment with an international round robin
A. Anca-Couce+10 more
semanticscholar +1 more source
A Ni‐doped PBSCN20 air electrode is proposed as a promising air electrode material for reversible protonic ceramic cells. An isovalent doping significantly facilitates oxygen vacancy formation and proton uptake while simultaneously reducing the energy barrier for proton migration.
Jiwon Yun+7 more
wiley +1 more source
Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian+7 more
wiley +1 more source
The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame
Kristina E. Hill+4 more
openalex +1 more source
By turning off hydrogen bonds by bulky ethyl cinnamate ester derivatization, softwood kraft lignin can flow under elevated temperatures, providing tough fiber in the melt for high take‐up speed. Subsequently, lignin ethyl cinnamate derivatives are readily stabilized with only dilute nitric acid leading to direct carbonized fiber with outstanding ...
Qi Hua+8 more
wiley +1 more source
3D Concrete Printing of Triply Periodic Minimum Surfaces for Enhanced Carbon Capture and Storage
A 3D‐printable and carbon‐capturing concrete is developed by replacing cement with diatomaceous earth (DE), which enhances rheology, provides hierarchical porosity, and serves as a nucleation site for carbonation. Maximum absorption of 488.7 gCO2 kgcement−1 is achieved in 7 days, a 142% increase over conventional concrete, and the triply periodic ...
Kun‐Hao Yu+9 more
wiley +1 more source