Results 61 to 70 of about 1,282 (135)

The Dynamical Landscape of the Negative‐Order (3+1)‐Dimensional Calogero–Bogoyavlenskii–Schiff Equation

open access: yesJournal of Mathematics, Volume 2026, Issue 1, 2026.
A new negative‐order form of the (3 + 1)‐dimensional Calogero–Bogoyavlenskii–Schiff equation is examined in this investigation. This equation plays an important role in accurately describing the thermodynamic properties of mixtures, particularly in chemical engineering applications.
Ulviye Demirbilek   +6 more
wiley   +1 more source

Exact Solutions to Some Nonlinear Time-Fractional Evolution Equations Using the Generalized Kudryashov Method in Mathematical Physics

open access: yesSymmetry, 2023
In this study, we utilize the potent generalized Kudryashov method to address the intricate obstacles presented by fractional differential equations in the field of mathematical physics. Specifically, our focus centers on obtaining novel exact solutions for three pivotal equations: the time-fractional seventh-order Sawada-Kotera-Ito equation, the time ...
openaire   +2 more sources

Exploring the Chavy–Waddy–Kolokolnikov Model: Analytical Study via Recently Developed Techniques

open access: yesJournal of Mathematics, Volume 2026, Issue 1, 2026.
This work explores the analytical soliton solutions to the Chavy–Waddy–Kolokolnikov equation (CWKE), which is a well‐known equation in biology that shows how light‐attracted bacteria move together. This equation is very useful for analyzing pattern creation, instability regimes, and minor changes in linear situations since bacterial movement is very ...
Jan Muhammad   +3 more
wiley   +1 more source

Exact Solitary Wave Solutions in Nonlinear Carbon Nanotube Composite Beams on Viscoelastic Foundations Under M‐Truncated Derivative

open access: yesJournal of Mathematics, Volume 2026, Issue 1, 2026.
In this study, the nonlinear partial differential equation that governs the free vibration of a carbon nanotube composite beam is analytically investigated using the truncated M‐fractional derivative. This model is a beam supported by a nonlinear viscoelastic base and reinforced by carbon nanotubes.
Nadia Javed   +7 more
wiley   +1 more source

On the relations between some well-known methods and the projective Riccati equations

open access: yesOpen Physics, 2020
Solving nonlinear evolution equations is an important issue in the mathematical and physical sciences. Therefore, traditional methods, such as the method of characteristics, are used to solve nonlinear partial differential equations. A general method for
Akçağıl Şamil
doaj   +1 more source

Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique

open access: yesResults in Physics, 2021
The (2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation and the Landau-Ginzburg-Higgs (LGH) equation describe the nonlinear waves with weak scattering and long-range interactions between the tropical, mid-latitude troposphere, the interaction of ...
Hemonta Kumar Barman   +6 more
doaj   +1 more source

Diverse general solitary wave solutions and conserved currents of a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science

open access: yesMathematical Methods in the Applied Sciences, Volume 48, Issue 4, Page 5039-5063, 15 March 2025.
This article presents an analytical investigation performed on a generalized geophysical Korteweg–de Vries model with nonlinear power law in ocean science. To start with, achieving diverse solitary wave solutions to the generalized power‐law model involves using wave transformation, which reduces the model to a nonlinear ordinary differential equation.
Oke Davies Adeyemo
wiley   +1 more source

Simulation of a Combined (2+1)-Dimensional Potential Kadomtsev–Petviashvili Equation via Two Different Methods

open access: yesMathematics
This paper presents an investigation into original analytical solutions of the (2+1)-dimensional combined potential Kadomtsev–Petviashvili and B-type Kadomtsev–Petviashvili equations.
Muath Awadalla   +2 more
doaj   +1 more source

Retrieval of the optical soliton solutions of the perturbed Schrödinger–Hirota equation with generalized anti‐cubic law nonlinearity having the spatio‐temporal dispersion

open access: yesMathematical Methods in the Applied Sciences, Volume 48, Issue 2, Page 2164-2178, 30 January 2025.
In this study, we obtained optical soliton solutions of the perturbed nonlinear Schrödinger–Hirota equation with generalized anti‐cubic law nonlinearity in the presence of spatio‐temporal dispersion. This equation models the propagation of optical pulses in fiber optic cables.
Ismail Onder   +3 more
wiley   +1 more source

Advanced Mathematical Approaches for the Kadomtsev–Petviashvili and Bogoyavlensky–Konopelchenko Equations in Applied Sciences

open access: yesAbstract and Applied Analysis, Volume 2025, Issue 1, 2025.
The Kadomtsev–Petviashvili (KP) equation and the Bogoyavlensky–Konopelchenko (BK) equation are fundamental models in the study of nonlinear wave dynamics, describing the evolution of weakly dispersive, quasi‐two‐dimensional (2D) wave phenomena in integrable systems.
Md. Abdul Aziz, Jingli Ren
wiley   +1 more source

Home - About - Disclaimer - Privacy