Results 181 to 190 of about 3,746,779 (357)

Programmable Liquid Crystal Elastomers Via Magnetic Field Assisted Oligomerization

open access: yesAdvanced Functional Materials, EarlyView.
This article presents a straightforward method for designing programmable liquid crystal elastomer (LCE) actuators using magnetic field alignment. It combines thio‐Michael polyaddition for efficient LCE synthesis with a strategy that preserves the nematic phase, enabling the alignment of high molecular weight LCOs.
Rakine Mouhoubi   +2 more
wiley   +1 more source

A Homeostatic Photonic Device Integrating Vapor‐Regulated Thermo‐Optical Feedback Mechanisms

open access: yesAdvanced Functional Materials, EarlyView.
An inorganic homeostatic photonic device is designed to autonomously regulate light, temperature, and vapor sorption through integrated positive and negative feedback mechanisms at multiple wavelengths. The device uses a graded mesoporous 1D photonic crystal coupled with a photothermal layer.
Caroline Byun   +4 more
wiley   +1 more source

Active Learning‐Driven Discovery of Sub‐2 Nm High‐Entropy Nanocatalysts for Alkaline Water Splitting

open access: yesAdvanced Functional Materials, EarlyView.
High‐entropy nanoparticles (HENPs) hold great promise for electrocatalysis, yet optimizing their compositions remains challenging. This study employs active learning and Bayesian Optimization to accelerate the discovery of octonary HENPs for hydrogen and oxygen evolution reactions.
Sakthivel Perumal   +5 more
wiley   +1 more source

High‐Entropy Liquid Metal Process for Transparent Ultrathin p‐Type Gallium Oxide

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a doping strategy for harvesting ultrathin Ga oxide layers using a multi‐elemental Ga‐based liquid metal alloy. The incorporation of trivalent In metal into the self‐limiting oxide formed on the alloy's surface is enabled by the existence of atomically dispersed Pt, Au, and Pd.
Laetitia Bardet   +14 more
wiley   +1 more source

Spin‐Selective Anisotropic Magnetoresistance Driven by Chirality in DNA

open access: yesAdvanced Functional Materials, EarlyView.
It is shown that magnetoresistance (MR) measurements carried out as a function of angular dependence between the magnetic field and a chiral (DNA) interface provide a valuable new insight into the charge transport mechanism associated with the chiral‐induced spin selectivity (CISS) effect.
Tapan Kumar Das   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy