Results 191 to 200 of about 1,450,886 (338)

COMMUNICATIONAL APPROACH IN THE ORGANIZATIONAL CHANGE [PDF]

open access: yes
The need for information and communication increases when organizations experience organizational changes. The paper examines the need of communication in terms of the professor Tichy`s theory of the technical, political and cultural systems of ...
Vasile Dragos Constantin
core  

Strain Partitioning at the Oxide Interface for the Isothermal Phase Transition in Freestanding Tri‐Layers

open access: yesAdvanced Functional Materials, EarlyView.
The metal–insulator transition temperature (TMI) is continuously tuned by the systematic change of relative thickness in VO2 and TiO2 films (tVO2/tTiO2${t_{{\mathrm{V}}{{\mathrm{O}}_2}}}/{t_{{\mathrm{Ti}}{{\mathrm{O}}_2}}}$) in freestanding TiO2/VO2/TiO2 tri‐layers.
Sungwon Lee   +5 more
wiley   +1 more source

Ionic Metal Poly(heptazine Imides) and Single‐Atoms Interplay: Engineered Stability and Performance for Photocatalysis, Photoelectrocatalysis and Organic Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab   +6 more
wiley   +1 more source

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Boosting Polysulfide Conversion on Fe‐Doped Nickel Diselenide Toward Robust Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work reports an advanced functional material based on Fe‐doped nickel diselenides toward robust lithium–sulfur batteries, demonstrating that Fe‐rich cores and surface doping enhance the density of states at the Fermi level and introduce unpaired electrons for the improvement of the LiPS adsorption and catalytic conversion. Abstract Sulfur offers a
Junshan Li   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy