Results 241 to 250 of about 3,496,599 (369)

Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle [PDF]

open access: gold, 2016
Michel Feidt   +3 more
openalex   +1 more source

Highly Active Air Electrode with Enhanced Proton Conduction via Isovalent Doping in a Layered Perovskite for Reversible Protonic Ceramic Cells

open access: yesAdvanced Functional Materials, EarlyView.
A Ni‐doped PBSCN20 air electrode is proposed as a promising air electrode material for reversible protonic ceramic cells. An isovalent doping significantly facilitates oxygen vacancy formation and proton uptake while simultaneously reducing the energy barrier for proton migration.
Jiwon Yun   +7 more
wiley   +1 more source

Experimentally Validated Design Principles of D‐Block Transition Metal Single‐Atom Non‐Dissociative Chemisorption Solid‐State Hydrogen Storage Materials

open access: yesAdvanced Functional Materials, EarlyView.
A novel descriptor and a bottom‐up design principle are established to enable the rational design of hydrogen storage materials based on d‐block transition metal single‐atom COFs. By modulating H₂ adsorption through d‐orbital tuning, this approach achieves both high storage capacity and fast kinetics, while revealing a volcano‐type relationship between
Qiuyan Yue   +24 more
wiley   +1 more source

Molecular Engineering of Coacervate Network Binders for Stable Silicon‐Based Anodes in Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A coacervate charged polymer network is designed to regulate Coulomb interactions for stabilizing silicon anodes. By tuning electrostatic interactions, the binders enhance adhesion, stress dissipation, and interfacial stability. The binder with the strongest Coulomb interactions enables high areal capacities and stable full‐cell cycling with Ni‐rich ...
Dong‐Yeob Han   +7 more
wiley   +1 more source

Understanding Functional Materials at School

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley   +1 more source

Home - About - Disclaimer - Privacy