Results 81 to 90 of about 92,273 (273)
The dielectric properties of clays are studied on the level of individual monolayers and functional double stacks. The material breakdown characteristics and charge storage performance are analyzed. For illustration, a defined charge pattern representing a cuneiform character is produced, written into a microscopic clay tile, referencing the origins of
Sebastian Gödrich +6 more
wiley +1 more source
Relating Theories via Renormalization [PDF]
The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences.
Kadanoff, Leo P.
core
Ionic Control of Microstructure and Lubrication in Charged, Physically Cross‐Linked Hydrogels
Here, charged, physically cross‐linked poly(methacrylamide‐co‐methacrylic acid) hydrogels stabilized by a short‐range attractive, long‐range repulsive potential is investigated. This work uncovers how salt addition alters not only swelling, but also the microstructure and dynamics, near‐surface stiffness and charge, and ultimately, its lubricity. Salts
Alexander Deptula +1 more
wiley +1 more source
On the Thermodynamics of Granular Media
A thermodynamic formulation for moving granular material is proposed. The fluctuations due to the constant flux and dissipation of energy are controlled in a `granular' ensemble by a pressure $\wp$ (`compression') which is conjugate to a contact volume (`
Herrmann, H. J.
core +4 more sources
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
Phase structure of matrix quantum mechanics at finite temperature
We study matrix quantum mechanics at finite temperature by Monte Carlo simulation. The model is obtained by dimensionally reducing 10d U(N) pure Yang-Mills theory to 1d.
E. Witten +24 more
core +1 more source
Photoswitching Conduction in Framework Materials
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez +4 more
wiley +1 more source
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du +8 more
wiley +1 more source
Thermodynamic relations among isotropic material properties in conditions of plane shear stress
We present new general relationships among the material properties of an isotropic material kept in homogeneous stress conditions with hydrostatic pressure and plane shear.
Calabrese, Salvatore +2 more
core +1 more source
A solvent‐free mechanochemistry‐enabled supramolecular engineering strategy is developed to directly synthesize covalent‐interconnected two‐dimensional atomic‐layered carbon nitride nanosheets photocatalyst, bypassing conventional top‐down exfoliation requirements.
Fanglei Yao +7 more
wiley +1 more source

