Results 51 to 60 of about 73,974 (338)
Thermoelectric Modules Incorporating MgAgSb and Mg3(Sb,Bi)2 Synthesized Using a Melting Method
A scalable synthesis method for a thermoelectric material of MgAgSb is established. A thermoelectric power module of MgAgSb/Mg3(Sb,Bi)2 is fabricated, showing the conversion efficiency of 7.4% at ΔT = 315 K. The performance is comparable to conventional Bi2Te3 modules when they are operated with an air‐cooled heat exchanger.
Kazuo Nagase +8 more
wiley +1 more source
Surface Plasmon Resonance-Enhanced CdS/FTO Heterojunction for Cu2+ Detection
Copper ion (Cu2+) pollution poses a serious threat to marine ecology and fisheries. However, the complexity of seawater and its interference factors make the online detection of Cu2+ quite challenging.
Feng Chen +4 more
doaj +1 more source
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian +6 more
wiley +1 more source
High temperature thermoelectric efficiency in Ba8Ga16Ge30 [PDF]
The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and ...
Christensen, M. +3 more
core +1 more source
Low‐Symmetry Weyl Semimetals: A Path to Ideal Topological States
This study presents a theoretical framework for realizing ideal Weyl semimetals, where Weyl nodes are well‐isolated at the Fermi level. The approach is exemplified in the low‐symmetry material Cu2SnSe3, which exhibits tunable topological phases, current‐induced orbital magnetization, and a strong circular photogalvanic effect, making it a promising ...
Darius‐Alexandru Deaconu +3 more
wiley +1 more source
Transverse thermoelectric conversion holds significant potential in addressing complex challenges faced by classical Seebeck/Peltier modules. A promising transverse thermoelectric phenomenon is the anomalous Nernst effect originating from nontrivial band
Takamasa Hirai +3 more
doaj +1 more source
Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating.
Burke, Adam M. +4 more
core +1 more source
Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu +11 more
wiley +1 more source
Ab-initio design of new Heusler materials for thermoelectric applications
In search of new prospects for thermoelectric materials, using ab-initio calculations and semi-classical Boltzmann theory, we have systematically investigated the electronic structure and transport properties of 18-valence electron count cobalt based ...
Brink, Jeroen van den +3 more
core +1 more source
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva +9 more
wiley +1 more source

