Results 71 to 80 of about 73,974 (338)
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee +9 more
wiley +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
Degradation of Methylene Blue by Hot Electrons Transfer in SnSe
The thermoelectric effect allows for the direct generation of potential gradients from the temperature gradient of the material, and this spontaneous formation of cathodes and anodes can greatly facilitate chemical reactions.
Li Fan +6 more
doaj +1 more source
Thin-film thermoelectric generators with a novel folding scheme are proposed for large-area, low energy-density applications. Both the electrical current and heat transfer are in the plane of the thermoelectric thin-film, yet the heat transfer is across ...
Tappura, Kirsi
core +1 more source
Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha +18 more
wiley +1 more source
Photo‐Switching Thermal and Lithium‐Ion Conductivity in Azobenzene Polymers
Light‐responsive azobenzene polymers control thermal and ionic transport simultaneously through structural transitions. UV illumination disrupts π–π stacking, converting crystalline trans states to amorphous cis configurations. Thermal conductivity drops from 0.45 to 0.15 W·m−1·K−1 while Li+ diffusivity increases 100 fold. This dual transport switching
Jaeuk Sung +7 more
wiley +1 more source
Thermoelectric Effects under Adiabatic Conditions
This paper investigates not fully explained voltage offsets observed by several researchers during the measurement of the Seebeck coefficient of high Z materials.
George Levy
doaj +1 more source
A single cell type Electro‐chromo‐emissive (ECECL) device integrating synchronized electrochromic (EC) and electrochemiluminescent (ECL) functions is developed using a mixed ionic‐electronic conductor (MIEC). A MIEC layer reduces ionic/electronic resistance, enabling ultrafast switching and enhanced optical contrast.
Hwandong Jang +5 more
wiley +1 more source
Magnetically tuned thermoelectric properties of metal-oxides: a review
In recent years, research on thermoelectric materials has garnered considerable attention, owing to their potential to offer efficient and environmentally friendly energy solutions.
Divya Prakash Dubey +1 more
doaj +1 more source

