Results 11 to 20 of about 10,860,223 (366)

Ramanujan’s mock theta functions [PDF]

open access: yesProceedings of the National Academy of Sciences, 2013
In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function , and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268–277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the ...
Griffin, Michael, Ono, Ken, Rolen, Larry
openaire   +2 more sources

The explicit form of the switching surface in admissible synthesis problem

open access: yesVisnik Harkivsʹkogo Nacionalʹnogo Universitetu im. V.N. Karazina. Cepiâ Matematika, Prikladna Matematika i Mehanika, 2022
In this article we consider the problem related to positional synthesis and controllability function method and more precisely to admissible maximum principle.
V. I. Korobov, O. S. Vozniak
doaj   +1 more source

On the Lovász Theta function for Independent Sets in Sparse Graphs [PDF]

open access: yesSymposium on the Theory of Computing, 2015
We consider the maximum independent set problem on graphs with maximum degree d. We show that the integrality gap of the Lovasz Theta function-based SDP has an integrality gap of O~(d/log3/2 d).
N. Bansal, Anupam Gupta, Guru Guruganesh
semanticscholar   +1 more source

Some results concerning localization property of generalized Herz, Herz-type Besov spaces and Herz-type Triebel-Lizorkin spaces

open access: yesKarpatsʹkì Matematičnì Publìkacìï, 2021
In this paper, based on generalized Herz-type function spaces $\dot{K}_{q}^{p}(\theta)$ were introduced by Y. Komori and K. Matsuoka in 2009, we define Herz-type Besov spaces $\dot{K}_{q}^{p}B_{\beta }^{s}(\theta)$ and Herz-type Triebel-Lizorkin spaces $\
A. Djeriou, R. Heraiz
doaj   +1 more source

On a partial theta function and its spectrum [PDF]

open access: yesProceedings of the Royal Society of Edinburgh: Section A Mathematics, 2015
The bivariate series defines a partial theta function. For fixed q (∣q∣ < 1), θ(q, ·) is an entire function. For q ∈ (–1, 0) the function θ(q, ·) has infinitely many negative and infinitely many positive real zeros. There exists a sequence of values of q
V. Kostov
semanticscholar   +1 more source

The reverse Holder inequality for an elementary function

open access: yesМатематичні Студії, 2021
For a positive function $f$ on the interval $[0,1]$, the power mean of order $p\in\mathbb R$ is defined by \smallskip\centerline{$\displaystyle \|\, f\,\|_p=\left(\int_0^1 f^p(x)\,dx\right)^{1/p}\quad(p\ne0), \qquad \|\, f\,\|_0=\exp\left(\int_0^1\ln ...
A.O. Korenovskii
doaj   +1 more source

On inversely $\theta$-semi-open and inversely $\theta$-semi-closed functions

open access: yesМатематичні Студії, 2020
In this paper, we introduce the concepts of inversely $\theta$-semi-open and inversely $\theta$-semi-closed functions and obtain their characterizations if it is possible in terms of $\theta$-closure and $\theta$-interior by using sets determined by the ...
J. Sanabria, E. Rosas, L. Vásquez
doaj   +1 more source

Error functions, Mordell integrals and an integral analogue of partial theta function [PDF]

open access: yes, 2016
A new transformation involving the error function $\textup{erf}(z)$, the imaginary error function $\textup{erfi}(z)$, and an integral analogue of a partial theta function is given along with its character analogues.
Atul Dixit, Arindam Roy, A. Zaharescu
semanticscholar   +1 more source

On second order mock theta function $ B(q) $

open access: yesElectronic Research Archive, 2022
In this paper, we present some arithmetic properties for the second order mock theta function $ B(q) $ given by McIntosh as: $ B(q) = \sum\limits_{n = 0}^{\infty}\frac{q^n(-q;q^2)_n}{(q;q^2)_{n+1}}.
Harman Kaur, Meenakshi Rana
doaj   +1 more source

Overpartitions related to the mock theta function $\omega(q)$ [PDF]

open access: yes, 2016
It was recently shown that $q\omega(q)$, where $\omega(q)$ is one of the third order mock theta functions, is the generating function of $p_{\omega}(n)$, the number of partitions of a positive integer $n$ such that all odd parts are less than twice the ...
G. Andrews   +3 more
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy