Results 171 to 180 of about 4,435,043 (396)

Patterned Assembly of Transition Metal Dichalcogenide/Graphene Heterostructures via Direct Laser Writing

open access: yesAdvanced Functional Materials, EarlyView.
The fabrication of patterned transition metal dichalcogenide (TMD)/graphene heterostructures via direct laser writing reveals new interface chemistry and enables efficient, customizable assembly. Selective laser irradiation of functionalized TMD/graphene triggers localized reactions, forming chemically modified interfaces.
Xin Chen   +12 more
wiley   +1 more source

Mechanism for Local‐Atomic Structure Changes in Chalcogenide‐based Threshold‐Switching Devices

open access: yesAdvanced Science
Threshold‐switching devices based on amorphous chalcogenides are considered for use as selector devices in 3D crossbar memories. However, the fundamental understanding of amorphous chalcogenide is hindered owing to the complexity of the local structures ...
Minwoo Choi   +11 more
doaj   +1 more source

Terahertz‐Driven Ultrafast Dynamics of Rare‐Earth Nickelates by Controlling Only the Charge Degree of Freedom

open access: yesAdvanced Functional Materials, EarlyView.
The THz drive of the Mott insulating state of a rare‐earth nickelate induces instantaneous insulator‐metal transition via quantum tunneling of valence electrons across the bandgap. This transition is pure electronic and highly non‐thermal, which may find its applications in ultrafast opto‐electronics with enhanced performance and minimal device size ...
Gulloo Lal Prajapati   +7 more
wiley   +1 more source

Enhanced Magnetization Switching Efficiency via Orbital‐Current‐Induced Torque in Ti/Ta (Pt)/CoFeB/MgO Structures

open access: yesAdvanced Functional Materials, EarlyView.
The orbital‐current‐induced torque is investigated as an efficient method for controlling magnetization direction. By introducing Ti as an orbital current source in Ti/Ta (or Pt)/CoFeB/MgO structures, the switching current is reduced by ∼25% compared to a conventional spin‐orbit torque structure of Ta/CoFeB/MgO.
So y. Shin   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy