Results 21 to 30 of about 214,223 (194)
On Ulam stability of a second order linear difference equation
In this paper we obtain some Ulam stability results for the second order and the third order linear difference equation with nonconstant coefficients in a Banach space.
Delia-Maria Kerekes +2 more
doaj +1 more source
On the Global Asymptotic Stability and 4-Period Oscillation of the Third-Order Difference Equation
The main objective of this paper is to study the global behavior and oscillation of the following third-order rational difference equation xn+1=αxnxn−1xn−2/βxn−12+γxn−22, where the initial conditions x−2,x−1,x0 are nonzero real numbers and α,β,γ are ...
M. E. Erdogan
doaj +1 more source
Oscillation of third-order half-linear neutral difference equations [PDF]
The authors give oscillation criteria for the nonlinear neutral difference equations of the third order, \[ \Delta \big ( a_n\,(\Delta ^2(x_n\pm b_nx_{n-\delta }))\big )^{\alpha }+q_n\,x_{n+1-\tau }^{\alpha }=0. \] These criteria present sufficient conditions for the oscillation of every (nontrivial) solution, or the limit of the solution as \(n\to ...
Thandapani, E., Selvarangam, S.
openaire +1 more source
In this research paper, the third-order fractional partial differential equation (FPDE) in the sense of the Caputo fractional derivative and the Atangana-Baleanu Caputo (ABC) fractional derivative is investigated for the first time. The importance of the
Shorish Omer Abdulla +2 more
doaj +1 more source
Oscillation for Certain Third Order Functional Delay Difference Equation
This paper is concerned with the third order functional delay difference equation of the form Δ(CnΔ(anΔxn)) + mΣi=1pniΔxσi(n-r) + mΣi=1qnif (xσi(n-r)) = 0. We obtain some new oscillation criteria by using Riccati transformation technique. Examples are given to illustrate the results.
Jaffer, I. Mohammed Ali +1 more
openaire +2 more sources
Some representations of the general solution to a difference equation of additive type
The general solution to the difference equation xn+1=axnxn−1xn−2+bxn−1xn−2+cxn−2+dxnxn−1xn−2,n∈N0, $$x_{n+1}=\frac {ax_{n}x_{n-1}x_{n-2}+bx_{n-1}x_{n-2}+cx_{n-2}+d}{x_{n}x_{n-1}x_{n-2}},\quad n\in\mathbb{N}_{0}, $$ where a,b,c∈C $a, b, c\in\mathbb{C}$, d∈
Stevo Stević
doaj +1 more source
Third Order Difference Methods for Hyperbolic Equations
Shlomo Burstein +3 more
openalex +3 more sources
Bounded Solutions of Third Order Nonlinear Difference Equations
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Andruch-Sobiło, Anna +1 more
openaire +2 more sources
Oscillation and Property B for Semi-Canonical Third-Order Advanced Difference Equations
In this paper, we present sufficient conditions for the third-order nonlinear advanced difference equations of the form Δ(a(n))Δ(b(n)Δy((n)))=p(n)f(y(σ(n)))\Delta \left( {a\left( n \right)} \right)\Delta \left( {b\left( n \right)\Delta y\left( {\left( n \
Chatzarakis G.E. +2 more
doaj +1 more source
Multiple big q-Jacobi polynomials [PDF]
Here, we investigate type II multiple big q-Jacobi orthogonal polynomials. We provide their explicit formulae in terms of basic hypergeometric series, raising and lowering operators, Rodrigues formulae, third-order q-difference equation, and we obtain ...
Fethi Bouzeffour, Mubariz Garayev
doaj +1 more source

