Results 171 to 180 of about 790,770 (385)

Design rules for self-assembled block copolymer patterns using tiled templates [PDF]

open access: bronze, 2014
Jae‐Byum Chang   +5 more
openalex   +1 more source

Performance Evaluation of Roof Tile Solar PV under Tropical Climate of Surabaya, Indonesia [PDF]

open access: hybrid, 2023
Elieser Tarigan   +4 more
openalex   +1 more source

Predicting High‐Resolution Spatial and Spectral Features in Mass Spectrometry Imaging with Machine Learning and Multimodal Data Fusion

open access: yesAdvanced Intelligent Discovery, EarlyView.
A multimodal fusion pipeline predicts high‐resolution ion distributions in imaging mass spectrometry by integrating Fourier transform ion cyclotron resonance, time‐of‐flight matrix‐assisted laser desorption/ionization, and time‐of‐flight secondary ion mass spectrometry data.
Md Inzamam Ul Haque   +7 more
wiley   +1 more source

AI‐Enhanced Surface‐Enhanced Raman Scattering for Accurate and Sensitive Biomedical Sensing

open access: yesAdvanced Intelligent Discovery, EarlyView.
AI‐SERS advances spectral interpretation with greater precision and speed, enhancing molecular detection, biomedical analysis, and imaging. This review explores its essential contributions to biofluid analysis, disease identification, therapeutic agent evaluation, and high‐resolution biomedical imaging, aiding diagnostic decision‐making.
Seungki Lee, Rowoon Park, Ho Sang Jung
wiley   +1 more source

Automatic Determination of Quasicrystalline Patterns from Microscopy Images

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work introduces a user‐friendly machine learning tool to automatically extract and visualize quasicrystalline tiling patterns from atomically resolved microscopy images. It uses feature clustering, nearest‐neighbor analysis, and support vector machines. The method is broadly applicable to various quasicrystalline systems and is released as part of
Tano Kim Kender   +2 more
wiley   +1 more source

CrossMatAgent: AI‐Assisted Design of Manufacturable Metamaterial Patterns via Multi‐Agent Generative Framework

open access: yesAdvanced Intelligent Discovery, EarlyView.
CrossMatAgent is a multi‐agent framework that combines large language models and diffusion‐based generative AI to automate metamaterial design. By coordinating task‐specific agents—such as describer, architect, and builder—it transforms user‐provided image prompts into high‐fidelity, printable lattice patterns.
Jie Tian   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy