Results 231 to 240 of about 1,376,574 (351)

Self‐Assembled Inorganic Nanomembrane Tubes: Rolled‐Up Piezoelectrics for Microacoustic Wave‐Based Actuators and Sensors

open access: yesAdvanced Materials, EarlyView.
This study demonstrates a self‐assembly process to generate free‐standing piezoelectric nanomembranes, forming ultracompact microtubular acoustic wave sensors and actuators. The miniaturized 3D piezoelectric platform reported in this work can be applied in telecommunication, energy harvesting, and acoustofluidics. Moreover, the 3D self‐assembly can add
Raphaël C. L‐M. Doineau   +9 more
wiley   +1 more source

Adaptive Twisting Metamaterials

open access: yesAdvanced Materials, EarlyView.
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri   +6 more
wiley   +1 more source

Mesenchymal Stem Cell‐Inspired Microneedle Platform for NIR‐responsive Immunomodulation and Accelerated Chronic Wound Healing

open access: yesAdvanced Materials, EarlyView.
The research demonstrates a Mesenchymal Stem Cell‐inspired microneedle platform (MSCi@MN) that addresses chronic diabetic wounds by combining MSC‐derived extracellular nanovesicles (NV)–DNA conjugates in microneedle tips with photothermal MXene in the patch layer.
Chan Ho Moon   +21 more
wiley   +1 more source

Recent Advances in the Machining of Titanium Alloys using Minimum Quantity Lubrication (MQL) Based Techniques

open access: yesInternational Journal of Precision Engineering and Manufacturing - Green Technology, 2019
S. Pervaiz   +3 more
semanticscholar   +1 more source

Porous Iridium Oxide Inverse Opal Catalysts Enable Efficient PEM Water Electrolysis

open access: yesAdvanced Materials, EarlyView.
Porous iridium‐based inverse opal (IrOx‐IO) structures are introduced as high‐performance, unsupported PEM‐WE anode catalysts. Their electrochemical behavior is analyzed through porosity/surface area tuning, voltage breakdown, and circuit modeling.
Sebastian Möhle   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy