Results 161 to 170 of about 1,475,669 (329)

Inhibition of Glutamine Metabolism Attenuates Tumor Progression Through Remodeling of the Macrophage Immune Microenvironment

open access: yesAdvanced Biology, EarlyView.
The prodrug strategy used in this study offers new promise for cancer metabolism‐based therapies. JHU083, a prodrug that, when cleaved by protease in the tumor microenvironment, yields the glutamine antagonist DON. JHU083 inhibits tumor growth by targeting glutamine‐addicted cancer cells and suppressing glutamine‐dependent M2 macrophages, leading to a ...
Tianhe Li   +10 more
wiley   +1 more source

Investigating the Cellular Effects of GALC Dosing in Enzyme Replacement Therapy for Krabbe Disease Supports the Role of Nanomedicine

open access: yesAdvanced Biology, EarlyView.
A detailed workflow for recombinant GALC production and characterization is presented to support enzyme replacement therapy for Krabbe disease. In vitro assays demonstrate that physiological GALC doses restore enzymatic activity and autophagic flux without affecting cell viability, whereas higher doses impair autophagy and reduce viability.
Ambra Del Grosso   +5 more
wiley   +1 more source

How can we know if EU cohesion policy is successful? Integrating micro and macro approaches to the evaluation of Structural Funds [PDF]

open access: yes
In this paper we describe an integrated approach for assessing the general economic effectiveness, efficiency and impact of public policy actions for large investment programs of the kind implemented over the past fifteen years in EU-aided Structural ...
Edgar Morgenroth   +3 more
core  

Numerical Studies of Influencing Factors on the Homogeneity of the Powder Mixture during the Powder Spreading Process of Powder Bed Fusion–Laser Beam/Metal

open access: yesAdvanced Engineering Materials, EarlyView.
AISI 304L stainless steel powder is mixed with silicon nitride (Si3N4) powder and processed by PBF‐LB/M, allowing partial retention of Si3N4. The numerical approach effectively predicts the Si3N4 powder homogeneity and N content distribution on the powder bed. Recent studies have focused on the alloying of nitrogen (N) in high‐alloy stainless steels by
Yuanbin Deng   +7 more
wiley   +1 more source

Mechanisms of Increasing Weld Depth during Temporal Power Modulation in High‐Power Laser Beam Welding

open access: yesAdvanced Engineering Materials, EarlyView.
Temporal power modulation increases weld depth in high‐power laser beam welding of dissimilar round bars by nearly 20% compared to same average continuously welded welding power. The mechanism of action also applies to sheet welding and depends on the inertia of keyhole depth for the modulated laser beam power.
Jan Grajczak   +7 more
wiley   +1 more source

The Social Weaver : Considering Top-down and Bottom-up design processes as a continuum [PDF]

open access: green, 2014
Paul Nicholas   +5 more
openalex  

A Novel Approach to Produce Metal–Metal Composites by Leveraging Immiscibility: Laser Powder Bed Fusion of Nanosilver‐Dispersed Titanium

open access: yesAdvanced Engineering Materials, EarlyView.
Incorporating nanosized silver into titanium for antimicrobial materials exploits the metastable miscibility gap between silver and titanium. Silver nanoparticles are synthesized via pulsed laser ablation in liquid. Silver addition refines the microstructure, increases hardness by 30%, and reduces Staphylococcus capitis microbial adhesion by 70%, with ...
Hamed Shokri   +4 more
wiley   +1 more source

Influence of Cooling Rate on Primary Silicon Size in Hypereutectic Al–Si Alloy Fabricated by Laser Powder Bed Fusion

open access: yesAdvanced Engineering Materials, EarlyView.
Al–Si alloys are particularly in demand for automotive and electronic applications, thanks to their excellent wear and thermal properties. Nevertheless, when processed by conventional methods with low cooling rates, the coarse primary Si phases are responsible for increasing brittleness and inducing crack propagation.
Layla Shams Tisha   +3 more
wiley   +1 more source

Development of a Novel Processing Route for Dispersoid/Precipitation‐Strengthened High Conductive Copper Alloys by Using Metalized Nanoceramics in Additive Manufacturing

open access: yesAdvanced Engineering Materials, EarlyView.
This study explores a process chain to produce dispersoid‐strengthened CuCr1Zr for applications requiring high strength and conductivity. Using gas‐atomized powder and copper‐plated alumina nanoparticles, additive manufacturing is performed via powder bed based additive manufacturing with green and red lasers, followed by heat treatment.
Heinrich von Lintel   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy