Results 101 to 110 of about 142,440 (280)
Cuttlebone‐inspired metamaterials exploit a septum‐wall architecture to achieve excellent mechanical and functional properties. This review classifies existing designs into direct biomimetic, honeycomb‐type, and strut‐type architectures, summarizes governing design principles, and presents a decoupled design framework for interpreting multiphysical ...
Xinwei Li, Zhendong Li
wiley +1 more source
THE CATEGORY OF TOPOLOGICAL OBJECTS [PDF]
Clifton, Yeaton, Smith, J. Wolfgang
openaire +2 more sources
From RNA to DNA: How Cargo Identity Reprograms Lipid Nanoparticle Architecture and Function
The evolution of lipid nanoparticles (LNPs) spans from RNA‐LNPs, used in mRNA vaccines, to DNA‐LNPs, ideal for gene therapies. Emerging bionano architectures, decorated with DNA and plasma proteins, pave the way for advanced DNA‐based therapies that are more stable, targeted, and customizable.
Erica Quagliarini +2 more
wiley +1 more source
Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi +4 more
wiley +1 more source
Building 1D lattice models with $G$-graded fusion category
We construct a family of one-dimensional (1D) quantum lattice models based on $G$-graded unitary fusion category $\mathcal{C}_G$. This family realize an interpolation between the anyon-chain models and edge models of 2D symmetry-protected topological ...
Shang-Qiang Ning, Bin-Bin Mao, Chenjie Wang
doaj +1 more source
Spin and Charge Control of Topological End States in Chiral Graphene Nanoribbons on a 2D Ferromagnet
Chiral graphene nanoribbons on a ferromagnetic gadolinium‐gold surface alloy display tunable spin and charge states at their termini. Atomic work function variations and exchange fields enabe transitions between singlet, doublet, and triplet configurations.
Leonard Edens +8 more
wiley +1 more source
Magnetic doping of the topological insulator Bi2Te3 with erbium adatoms induces out‐of‐plane magnetism and breaks time‐reversal symmetry, opening a Dirac gap and driving a Fermi surface transition from hexagonal to star‐of‐David geometry. Microscopy, spectroscopy, and magnetic dichroism reveal atomically controlled magnetic interactions that tailor the
Beatriz Muñiz Cano +18 more
wiley +1 more source
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics
The review discusses the challenges of wide and ultrawide bandgap semiconducting oxides as a suitable material platform for photonics. They offer great versatility in terms of tuning microstructure, native defects, doping, anisotropy, and micro‐ and nano‐structuring. The review focuses on their light emission, light‐confinement in optical cavities, and
Ana Cremades +7 more
wiley +1 more source
Adaptive Twisting Metamaterials
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri +6 more
wiley +1 more source
Azaporphyrinoid‐Based Photo‐ and Electroactive Architectures for Advanced Functional Materials
A long‐standing collaboration between the Torres and Guldi groups has yielded diverse azaporphyrinoid‐based donor‐acceptor nanohybrids with promising applications in solar energy conversion. This conspectus highlights key molecular platforms and structure‐function relationships that govern light and charge management, supporting the rational design of ...
Jorge Labella +3 more
wiley +1 more source

