Results 131 to 140 of about 50,858 (315)

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Dual‐Phased Molybdenum Carbides Confined in MOF‐Derived Carbon Nanoframes Enhance Capacitive Desalination

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐phase MoC/Mo2C/CoNC nanoframes are synthesized via a MOF‐on‐MOF strategy, demonstrating a large salt adsorption capacity, a low energy consumption, and an excellent cycling stability. In situ/ex situ characterizations and DFT calculations reveal that the MoC/Mo2C dual phase transition facilitates Na+ adsorption/desorption, while interface‐induced ...
Feifei Pang   +8 more
wiley   +1 more source

Magnetic and Structural Response Tuned by Coexisting Mn Concentration‐Dependent Phases in MnBi2Te4 Thin Film Grown on GaAs(001) by Molecular Beam Epitaxy

open access: yesAdvanced Functional Materials, EarlyView.
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch   +10 more
wiley   +1 more source

Charge‐Induced Morphing Gels for Bioinspired Actuation

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel electroactive actuation mechanism that enables the gel material to generate substantial and reversible shape‐changing while preserving topological and isochoric (volumetric) equivalence. The resultant morphing behaviors can mimic the movements of muscle‐driven organelles in nature, including cilia‐like beating and ...
Ciqun Xu   +4 more
wiley   +1 more source

Cryogenic Focused Ion Beam Milling to Investigate the Anisotropic Magnetotransport Properties of Bismuth Microcrystals

open access: yesAdvanced Functional Materials, EarlyView.
The highly anisotropic Fermi surface of bismuth results in variations in magnetotransport properties across different crystallographic directions, which can be characterized by studying microcrystals. To avoid the observed surface melting under room temperature Focused Ion Beam (FIB) irradiation, two low‐temperature FIB fabrication methods are proposed
Amaia Sáenz‐Hernández   +6 more
wiley   +1 more source

Microsphere Autolithography—A Scalable Approach for Arbitrary Patterning of Dielectric Spheres

open access: yesAdvanced Functional Materials, EarlyView.
MicroSphere Autolithography (µSAL) enables scalable fabrication of patchy particles with customizable surface motifs. Focusing light through dielectric microspheres creates well defined, tunable patches via a conformal poly(dopamine) photoresist. Nearly arbitrary surface patterns can be achieved, with the resolution set by the index contrast between ...
Elliott D. Kunkel   +3 more
wiley   +1 more source

Research on the Value-Added Pathways of Government-Invested EPC Projects Based on DEMATEL–TAISM–MICMAC

open access: yesBuildings
Government-invested Engineering, Procurement, and Construction (EPC) projects often encounter challenges, such as ambiguous value-added pathways and undefined key driving mechanisms, which impede efficiency improvements during implementation.
Shikang Liu, Lei Wang, Shenghong Wu
doaj   +1 more source

Asymptotic models for the topological sensitivity of the energy functional

open access: yesApplied Mathematics Letters, 2009
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +2 more sources

Emergent Spin‐Glass Behavior in an Iron(II)‐Based Metal–Organic Framework Glass

open access: yesAdvanced Functional Materials, EarlyView.
A one‐pot, solvent‐free synthesis yields an Fe2+‐based metal‐organic framework (MOF) glass featuring a continuous random network structure. The material exhibits spin‐glass freezing at 14 K, driven by topological‐disorder and short‐range magnetic frustration, showcasing the potential of MOF glasses as a plattform for cooperative magnetic phenomena in ...
Chinmoy Das   +8 more
wiley   +1 more source

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy