Results 181 to 190 of about 50,858 (315)

A Quantitative Printability Framework for Programmable Assembly of Pre‐Vascular Patterns via Laser‐Induced Forward Transfer

open access: yesAdvanced Healthcare Materials, EarlyView.
Laser‐Induced Forward Transfer (LIFT) is presented as a powerful micropatterning tool. An objective printability framework is developed to assess optimal printing parameter combinations. The technology is further explored for its ability to deterministically deposit microdroplets at predefined locations following CAD designs, enabling the patterning of
Cécile Bosmans   +8 more
wiley   +1 more source

Néel Tensor Torque in Polycrystalline Antiferromagnets

open access: yesAdvanced Materials, EarlyView.
This work introduces a Néel tensor torque based on a rank‐two symmetric tensor capturing spin correlations in a polycrystalline antiferromagnet. It shows the Néel tensor can be shaped and reshaped through the spin‐orbit torque (SOT) technique, enabling field‐free SOT switching with a specific polarity of the adjacent ferromagnet. This discovery opens a
Chao‐Yao Yang   +4 more
wiley   +1 more source

Hysteretic self-oscillatory acoustic radiation with tunable orbital angular momentum. [PDF]

open access: yesSci Adv
Zhang L   +17 more
europepmc   +1 more source

Dimensionally Resolved Nanostructures of an Atomically Precise and Optically Active 1D van der Waals Helix

open access: yesAdvanced Materials, EarlyView.
The ability to grow nanostructures based on inorganic helical crystals with long‐range order will enable a platform to realize physical states that arise from chirality. Herein, it is demonstrated that controlled vapor phase deposition of an atomically precise helical crystal, GaSI, into ultrathin 1D nanowires and quasi‐2D nanoribbons.
Kaitlyn G. Dold   +15 more
wiley   +1 more source

Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives

open access: yesAdvanced Materials, EarlyView.
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy