Results 21 to 30 of about 100,657 (228)
The results demonstrate a simulation‐driven workflow that applies LSB topology optimization with additive manufacturing constraints to mission‐specific load cases, integrating European Cooperation for Space Standardization compliant verification and manufacturability to develop structurally efficient rover suspension components.
Stelios K. Georgantzinos +11 more
wiley +1 more source
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian +6 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
From a database of 170 pentagonal 2D materials, 4 candidates exhibiting altermagnetic ordering are screened. Furthermore, the spin‐splitting and unconventional boundary states in the pentagonal 2D altermagnetic monolayer MnS2 are investigated. A MnS2‐based altermagnetic tunneling junction is designed and, through ab initio quantum transport simulations,
Jianhua Wang +8 more
wiley +1 more source
The tangent complex and Hochschild cohomology of E_n-rings
In this work, we study the deformation theory of $\cE_n$-rings and the $\cE_n$ analogue of the tangent complex, or topological Andr\'e-Quillen cohomology. We prove a generalization of a conjecture of Kontsevich, that there is a fiber sequence $A[n-1] \ra
Cohen, John Francis, Lurie, Toën, Toën
core +1 more source
2D Multifunctional Spin‐Orbit Coupled Dirac Nodal Line Materials
A total of 473 nonmagnetic and antiferromagnetic 2D spin‐orbit coupled Dirac nodal line materials are screened, spanning 5 layer groups and 12 magnetic space groups. Furthermore, it integrates their topological properties with electride, multiferroic, and magnetic characteristics, revealing unique systems with expanded functionalities and promising ...
Weizhen Meng +7 more
wiley +1 more source
On the K-theoretic classification of dynamically stable systems
This paper deals with the construction of a suitable topological $K$-theory capable of classifying topological phases of dynamically stable systems described by gapped $\eta$-self-adjoint operators on a Krein space with indefinite metric $\eta$.Comment ...
De Nittis, Giuseppe, Gomi, Kiyonori
core +1 more source
Electric control of magnetic tunnel junctions offers a path to drastically reduce the energy requirements of the device. Electric field control of magnetization can be realized in a multitude of ways. These mechanisms can be integrated into existing spintronic devices to further reduce the operational energy.
Will Echtenkamp +7 more
wiley +1 more source
Reparametrizations of Continuous Paths [PDF]
A reparametrization (of a continuous path) is given by a surjective weakly increasing self-map of the unit interval. We show that the monoid of reparametrizations (with respect to compositions) can be understood via ``stop-maps'' that allow to ...
Fahrenberg, Ulrich, Raussen, Martin
core +1 more source
Reconfigurable Three‐Dimensional Superconducting Nanoarchitectures
3D superconducting nanostructures offer new possibilities for emergent physical phenomena. However, fabricating complex geometries remains challenging. Here 3D nanoprinting of complex 3D superconducting nanoarchitectures is established. As well as propagating superconducting vortices in 3D, anisotropic superconducting properties with geometric ...
Elina Zhakina +11 more
wiley +1 more source

