On Multilinear Inequalities of Ho lder-Brascamp-Lieb Type for Torsion-Free Discrete Abelian Groups
Michael Christ +5 more
openalex +2 more sources
Torsion-free and mixed abelian groups
openaire +3 more sources
Arithmetic fundamental lemma for the spherical Hecke algebra. [PDF]
Li C, Rapoport M, Zhang W.
europepmc +1 more source
On <i>p</i>-refined Friedberg-Jacquet integrals and the classical symplectic locus in the GL 2 n eigenvariety. [PDF]
Barrera Salazar D, Graham A, Williams C.
europepmc +1 more source
State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. [PDF]
Nagy PR.
europepmc +1 more source
Realistic 3D human saccades generated by a 6-DOF biomimetic robotic eye under optimal control. [PDF]
Van Opstal AJ +3 more
europepmc +1 more source
Related searches:
Multiplication Groups of Abelian Torsion-Free Groups of Finite Rank
Mediterranean Journal of Mathematics, 2022For an Abelian group G, any homomorphism μ:G⊗G→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin ...
E. Kompantseva, Askar Tuganbaev
semanticscholar +1 more source
On Torsion-Free Abelian k-Groups
Proceedings of the American Mathematical Society, 1987A height sequence s is a function on primes p with values \(s_ p\) natural numbers or \(\infty\). The height sequence \(| x|\) of an element x in a torsion-free abelian group G is defined by \(| x|_ p=height\) of x at p. For a height sequence s, \(G(s)=\{x\in G:| x| \geq s\}\), \(G(ps)=\{x\in G(s):| x|_ p\geq s_ p+1\}\), \(G(s^*)=\{x\in G(s):\sum_{p}(|
Dugas, Manfred, Rangaswamy, K. M.
openaire +1 more source
Jordan tori for a torsion free abelian group
, 2013We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type.
S. Azam, Yōji Yoshii, M. Yousofzadeh
semanticscholar +1 more source
Reconstructing a set from its subset sums: $2$-torsion-free groups
, 2023For a finite multiset $A$ of an abelian group $G$, let $\text{FS}(A)$ denote the multiset of the $2^{|A|}$ subset sums of $A$. It is natural to ask to what extent $A$ can be reconstructed from $\text{FS}(A)$.
Federico Glaudo, Noah Kravitz
semanticscholar +1 more source

