Results 181 to 190 of about 46,642 (242)

On Multilinear Inequalities of Ho lder-Brascamp-Lieb Type for Torsion-Free Discrete Abelian Groups

open access: diamond
Michael Christ   +5 more
openalex   +2 more sources

Realistic 3D human saccades generated by a 6-DOF biomimetic robotic eye under optimal control. [PDF]

open access: yesFront Robot AI
Van Opstal AJ   +3 more
europepmc   +1 more source

Multiplication Groups of Abelian Torsion-Free Groups of Finite Rank

Mediterranean Journal of Mathematics, 2022
For an Abelian group G, any homomorphism μ:G⊗G→G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin ...
E. Kompantseva, Askar Tuganbaev
semanticscholar   +1 more source

On Torsion-Free Abelian k-Groups

Proceedings of the American Mathematical Society, 1987
A height sequence s is a function on primes p with values \(s_ p\) natural numbers or \(\infty\). The height sequence \(| x|\) of an element x in a torsion-free abelian group G is defined by \(| x|_ p=height\) of x at p. For a height sequence s, \(G(s)=\{x\in G:| x| \geq s\}\), \(G(ps)=\{x\in G(s):| x|_ p\geq s_ p+1\}\), \(G(s^*)=\{x\in G(s):\sum_{p}(|
Dugas, Manfred, Rangaswamy, K. M.
openaire   +1 more source

Jordan tori for a torsion free abelian group

, 2013
We classify Jordan G-tori, where G is any torsion-free abelian group. Using the Zelmanov prime structure theorem, such a class divides into three types, the Hermitian type, the Clifford type, and the Albert type.
S. Azam, Yōji Yoshii, M. Yousofzadeh
semanticscholar   +1 more source

Reconstructing a set from its subset sums: $2$-torsion-free groups

, 2023
For a finite multiset $A$ of an abelian group $G$, let $\text{FS}(A)$ denote the multiset of the $2^{|A|}$ subset sums of $A$. It is natural to ask to what extent $A$ can be reconstructed from $\text{FS}(A)$.
Federico Glaudo, Noah Kravitz
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy