Results 11 to 20 of about 33,238 (212)
Torsion-Free Abelian Group Rings III
Ryûki Matsuda
openalex +4 more sources
Quasi-bialgebra Structures and Torsion-free Abelian Groups [PDF]
We describe all the quasi-bialgebra structures of a group algebra over a torsion-free abelian group. They all come out to be triangular in a unique way. Moreover, up to an isomorphism, these quasi-bialgebra structures produce only one (braided) monoidal ...
Alessandro Ardizzoni +2 more
openalex +3 more sources
On Undecidability of Finite Subsets Theory for Torsion Abelian Groups
Let M be a commutative cancellative monoid with an element of infinite order. The binary operation can be extended to all finite subsets of M by the pointwise definition. So, we can consider the theory of finite subsets of M.
Sergey Mikhailovich Dudakov
doaj +1 more source
The abelian groups with torsion-free endomorphism ring
I. Szélpál
openalex +3 more sources
Regularity in torsion-free abelian groups [PDF]
Eine Untergruppe \(B\) einer torsionsfreien abelschen Gruppe \(A\) heißt regulär (kritisch regulär) falls \(t^ B(b) = t^ A(b)\) für alle \(b\in B\) (falls für alle Typen \(t\) gilt: \(B(t) \setminus B^*(t)_ * \subset A(t)\setminus A^*(t)_ *\)). Die Untergruppe \(B\) heißt stark regulär, falls \(B\) eine reguläre und eine kritisch reguläre Untergruppe ...
Müller, Edgar, Mutzbauer, Otto
openaire +2 more sources
Homogeneous torsion-free Abelian groups [PDF]
Ladislav Procházka
openalex +2 more sources
A Distinguished Subgroup of Compact Abelian Groups
Here “group” means additive abelian group. A compact group G contains δ–subgroups, that is, compact totally disconnected subgroups Δ such that G/Δ is a torus.
Dikran Dikranjan +3 more
doaj +1 more source
Invariants for a class of torsion-free abelian groups [PDF]
In this note we present a complete set of quasi-isomorphism invariants for strongly indecomposable abelian groups of the form G = G ( A 1 , … , A n ) G = G({A_1}, \ldots ,{A_n}) .
Arnold, D., Vinsonhaler, C.
openaire +2 more sources
On Some Results of a Torsion-Free Abelian Kernel Group
In [6], for any torsion-free abelian groups Gand H, the kernel of Hin GisfHGGHHomfker, ker,. The kernel of Hin Gis a pure fully invariant subgroup of G.
Ricky B. Villeta
doaj +1 more source
On the Classification Problem for Rank 2 Torsion-Free Abelian Groups [PDF]
We study here some foundational aspects of the classification problem for torsion-free abelian groups of finite rank. These are, up to isomorphism, the subgroups of the additive groups (Q^n, +), for some n = 1, 2, 3,....
Kechris, Alexander S.
core +2 more sources

