Results 41 to 50 of about 33,430 (215)
The homotopy type of the loops on $(n-1)$-connected $(2n+1)$-manifolds
For $n\geq 2$ we compute the homotopy groups of $(n-1)$-connected closed manifolds of dimension $(2n+1)$. Away from the finite set of primes dividing the order of the torsion subgroup in homology, the $p$-local homotopy groups of $M$ are determined by ...
A Berglund +24 more
core +1 more source
Vector bundles on bielliptic surfaces: Ulrich bundles and degree of irrationality
Abstract This paper deals with two problems about vector bundles on bielliptic surfaces. The first is to give a classification of Ulrich bundles on such surfaces S$S$, which depends on the topological type of S$S$. In doing so, we study the weak Brill–Noether property for moduli spaces of sheaves with isotropic Mukai vector. Adapting an idea of Moretti
Edoardo Mason
wiley +1 more source
The $L^2$-torsion polytope of amenable groups
We introduce the notion of groups of polytope class and show that torsion-free amenable groups satisfying the Atiyah Conjecture possess this property. A direct consequence is the homotopy invariance of the $L^2$-torsion polytope among $G$-CW-complexes ...
Funke, Florian
core +1 more source
E-transitive torsion-free abelian groups
The author extends the well-known notion of a strongly homogeneous group G, an abelian group with Aut G acting transitively on the pure rank-one subgroups of G, to E-transitive groups. In this case the endomorphism ring \(E=End G\) acts transitive on the pure rank-one subgroups.
openaire +2 more sources
Local equivalence and refinements of Rasmussen's s‐invariant
Abstract Inspired by the notions of local equivalence in monopole and Heegaard Floer homology, we introduce a version of local equivalence that combines odd Khovanov homology with equivariant even Khovanov homology into an algebraic package called a local even–odd (LEO) triple.
Nathan M. Dunfield +2 more
wiley +1 more source
Groups with minimax commutator subgroup [PDF]
A result of Dixon, Evans and Smith shows that if $G$ is a locally (soluble-by-finite) group whose proper subgroups are (finite rank)-by-abelian, then $G$ itself has this property, i.e. the commutator subgroup of~$G$ has finite rank.
Francesco de Giovanni, Trombetti
doaj
A torsion theory in the category of cocommutative Hopf algebras
The purpose of this article is to prove that the category of cocommutative Hopf $K$-algebras, over a field $K$ of characteristic zero, is a semi-abelian category.
Gran, Marino +2 more
core +1 more source
Witten genera of complete intersections
Abstract We prove vanishing results for Witten genera of string generalized complete intersections in homogeneous Spinc$\text{Spin}^c$‐manifolds and in other Spinc$\text{Spin}^c$‐manifolds with Lie group actions. By applying these results to Fano manifolds with second Betti number equal to one we get new evidence for a conjecture of Stolz.
Michael Wiemeler
wiley +1 more source
On the topological ranks of Banach ∗$^*$‐algebras associated with groups of subexponential growth
Abstract Let G$G$ be a group of subexponential growth and C→qG$\mathcal C\overset{q}{\rightarrow }G$ a Fell bundle. We show that any Banach ∗$^*$‐algebra that sits between the associated ℓ1$\ell ^1$‐algebra ℓ1(G|C)$\ell ^1(G\,\vert \,\mathcal C)$ and its C∗$C^*$‐envelope has the same topological stable rank and real rank as ℓ1(G|C)$\ell ^1(G\,\vert ...
Felipe I. Flores
wiley +1 more source
ABSTRACT Cartan's equivalence method is applied to explicitly construct three‐dimensional invariant coframes for three branches, which are used to characterize scalar second‐order ODEs with a three‐point symmetry Lie algebra. Additionally, we present a method for constructing the point transformation based on the derived invariant coframes.
Ahmad Y. Al‐Dweik +5 more
wiley +1 more source

