Results 161 to 170 of about 8,585,164 (342)

Near‐Infrared Organic Photovoltaic Electrodes for Subretinal Neurostimulation

open access: yesAdvanced Functional Materials, EarlyView.
Organic photovoltaic electrodes based on the D18:Y6 blend enable precise and light‐controlled activation of retinal ganglion cells in a degenerating retina. NIR Light‐driven activation of retinal ganglion cells, tunable stimulation parameters, and biocompatibility with human retinal organoids highlight their potential for next‐generation prosthetics ...
Andrea Corna   +10 more
wiley   +1 more source

Expanding Chemical Space of Nucleic Acid Nanoparticles for Tunable Antiviral‐Like Immunomodulatory Responses and Potent Adjuvant Activity

open access: yesAdvanced Functional Materials, EarlyView.
We introduce a nucleic acid nanoparticle (NANP) platform designed to be rrecognized by the human innate immune system in a regulated manner. By changing chemical composition while maintaining constant architectural parameters, we identify key determinants of immunorecognition enabling the rational design of NANPs with tunable immune activation profiles
Martin Panigaj   +21 more
wiley   +1 more source

Exploiting Two‐Photon Lithography, Deposition, and Processing to Realize Complex 3D Magnetic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey   +5 more
wiley   +1 more source

Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions

open access: yes, 2020
Gilbert J.   +7 more
core   +1 more source

Crack‐Growing Interlayer Design for Deep Crack Propagation and Ultrahigh Sensitivity Strain Sensing

open access: yesAdvanced Functional Materials, EarlyView.
A crack‐growing semi‐cured polyimide interlayer enabling deep cracks for ultrahigh sensitivity in low‐strain regimes is presented. The sensor achieves a gauge factor of 100 000 at 2% strain and detects subtle deformations such as nasal breathing, highlighting potential for minimally obstructive biomedical and micromechanical sensing applications ...
Minho Kim   +11 more
wiley   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus   +5 more
wiley   +1 more source

Magnetic and Structural Response Tuned by Coexisting Mn Concentration‐Dependent Phases in MnBi2Te4 Thin Film Grown on GaAs(001) by Molecular Beam Epitaxy

open access: yesAdvanced Functional Materials, EarlyView.
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy